These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Application of genome-editing systems to enhance available pig resources for agriculture and biomedicine. Lee K; Farrell K; Uh K Reprod Fertil Dev; 2019 Jan; 32(2):40-49. PubMed ID: 32188556 [TBL] [Abstract][Full Text] [Related]
4. Efficient production of biallelic GGTA1 knockout pigs by cytoplasmic microinjection of CRISPR/Cas9 into zygotes. Petersen B; Frenzel A; Lucas-Hahn A; Herrmann D; Hassel P; Klein S; Ziegler M; Hadeler KG; Niemann H Xenotransplantation; 2016 Sep; 23(5):338-46. PubMed ID: 27610605 [TBL] [Abstract][Full Text] [Related]
5. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Zhou X; Xin J; Fan N; Zou Q; Huang J; Ouyang Z; Zhao Y; Zhao B; Liu Z; Lai S; Yi X; Guo L; Esteban MA; Zeng Y; Yang H; Lai L Cell Mol Life Sci; 2015 Mar; 72(6):1175-84. PubMed ID: 25274063 [TBL] [Abstract][Full Text] [Related]
6. The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the α-1,3-galactosyltransferase gene in porcine embryonic fibroblasts. Sato M; Miyoshi K; Nagao Y; Nishi Y; Ohtsuka M; Nakamura S; Sakurai T; Watanabe S Xenotransplantation; 2014; 21(3):291-300. PubMed ID: 24919525 [TBL] [Abstract][Full Text] [Related]
7. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Whitworth KM; Lee K; Benne JA; Beaton BP; Spate LD; Murphy SL; Samuel MS; Mao J; O'Gorman C; Walters EM; Murphy CN; Driver J; Mileham A; McLaren D; Wells KD; Prather RS Biol Reprod; 2014 Sep; 91(3):78. PubMed ID: 25100712 [TBL] [Abstract][Full Text] [Related]
8. Efficient Generation of Somatic Cell Nuclear Transfer-Competent Porcine Cells with Mutated Alleles at Multiple Target Loci by Using CRISPR/Cas9 Combined with Targeted Toxin-Based Selection System. Sato M; Miyoshi K; Nakamura S; Ohtsuka M; Sakurai T; Watanabe S; Kawaguchi H; Tanimoto A Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29207527 [TBL] [Abstract][Full Text] [Related]
9. Oocyte electroporation prior to in vitro fertilization is an efficient method to generate single, double, and multiple knockout porcine embryos of interest in biomedicine and animal production. Navarro-Serna S; Piñeiro-Silva C; Fernández-Martín I; Dehesa-Etxebeste M; López de Munain A; Gadea J Theriogenology; 2024 Apr; 218():111-118. PubMed ID: 38320372 [TBL] [Abstract][Full Text] [Related]
10. One-Step Generation of Multiple Gene-Edited Pigs by Electroporation of the CRISPR/Cas9 System into Zygotes to Reduce Xenoantigen Biosynthesis. Tanihara F; Hirata M; Nguyen NT; Sawamoto O; Kikuchi T; Otoi T Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33668187 [TBL] [Abstract][Full Text] [Related]
11. Efficient genome editing in cultured cells and embryos of Debao pig and swamp buffalo using the CRISPR/Cas9 system. Su X; Cui K; Du S; Li H; Lu F; Shi D; Liu Q In Vitro Cell Dev Biol Anim; 2018 May; 54(5):375-383. PubMed ID: 29556895 [TBL] [Abstract][Full Text] [Related]
12. The advancements, challenges, and future implications of the CRISPR/Cas9 system in swine research. Zhang J; Khazalwa EM; Abkallo HM; Zhou Y; Nie X; Ruan J; Zhao C; Wang J; Xu J; Li X; Zhao S; Zuo E; Steinaa L; Xie S J Genet Genomics; 2021 May; 48(5):347-360. PubMed ID: 34144928 [TBL] [Abstract][Full Text] [Related]
13. Multiplexed genome engineering for porcine fetal fibroblasts with gRNA-tRNA arrays based on CRISPR/Cas9. Guo X; Geng L; Jiang C; Yao W; Jin J; Liu Z; Mu Y Anim Biotechnol; 2023 Dec; 34(9):4703-4712. PubMed ID: 36946758 [TBL] [Abstract][Full Text] [Related]
14. Generation of an MC3R knock-out pig by CRSPR/Cas9 combined with somatic cell nuclear transfer (SCNT) technology. Yin Y; Hao H; Xu X; Shen L; Wu W; Zhang J; Li Q Lipids Health Dis; 2019 May; 18(1):122. PubMed ID: 31138220 [TBL] [Abstract][Full Text] [Related]
15. Efficient CRISPR/Cas9-mediated gene editing in Guangdong small-ear spotted pig cells using an optimized electrotransfection method. Wei YY; Zhan QM; Zhu XX; Yan AF; Feng J; Liu L; Li JH; Tang DS Biotechnol Lett; 2020 Nov; 42(11):2091-2109. PubMed ID: 32494996 [TBL] [Abstract][Full Text] [Related]
16. Current progress of genome editing in livestock. Lee K; Uh K; Farrell K Theriogenology; 2020 Jul; 150():229-235. PubMed ID: 32000993 [TBL] [Abstract][Full Text] [Related]
17. Visual screening of CRISPR/Cas9 editing efficiency based on micropattern arrays for editing porcine cells. Peng W; Gao M; Zhu X; Liu X; Yang G; Li S; Liu Y; Bai L; Yang J; Bao J Biotechnol J; 2024 Apr; 19(4):e2300691. PubMed ID: 38622798 [TBL] [Abstract][Full Text] [Related]
18. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum. Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843 [TBL] [Abstract][Full Text] [Related]
19. Viable pigs after simultaneous inactivation of porcine MHC class I and three xenoreactive antigen genes GGTA1, CMAH and B4GALNT2. Fischer K; Rieblinger B; Hein R; Sfriso R; Zuber J; Fischer A; Klinger B; Liang W; Flisikowski K; Kurome M; Zakhartchenko V; Kessler B; Wolf E; Rieben R; Schwinzer R; Kind A; Schnieke A Xenotransplantation; 2020 Jan; 27(1):e12560. PubMed ID: 31591751 [TBL] [Abstract][Full Text] [Related]
20. Whole-Genome Sequencing Reveals Rare Off-Target Mutations in Li Z; Lan J; Shi X; Lu T; Hu X; Liu X; Chen Y; He Z CRISPR J; 2024 Feb; 7(1):29-40. PubMed ID: 38353621 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]