BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36584049)

  • 1. In vitro genome editing activity of Cas9 in somatic cells after random and transposon-based genomic Cas9 integration.
    Söllner JH; Sake HJ; Frenzel A; Lechler R; Herrmann D; Fuchs W; Petersen B
    PLoS One; 2022; 17(12):e0279123. PubMed ID: 36584049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome Editing in Pigs.
    Preisinger D; Winogrodzki T; Klinger B; Schnieke A; Rieblinger B
    Methods Mol Biol; 2023; 2631():393-417. PubMed ID: 36995680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of genome-editing systems to enhance available pig resources for agriculture and biomedicine.
    Lee K; Farrell K; Uh K
    Reprod Fertil Dev; 2019 Jan; 32(2):40-49. PubMed ID: 32188556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient production of biallelic GGTA1 knockout pigs by cytoplasmic microinjection of CRISPR/Cas9 into zygotes.
    Petersen B; Frenzel A; Lucas-Hahn A; Herrmann D; Hassel P; Klein S; Ziegler M; Hadeler KG; Niemann H
    Xenotransplantation; 2016 Sep; 23(5):338-46. PubMed ID: 27610605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer.
    Zhou X; Xin J; Fan N; Zou Q; Huang J; Ouyang Z; Zhao Y; Zhao B; Liu Z; Lai S; Yi X; Guo L; Esteban MA; Zeng Y; Yang H; Lai L
    Cell Mol Life Sci; 2015 Mar; 72(6):1175-84. PubMed ID: 25274063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the α-1,3-galactosyltransferase gene in porcine embryonic fibroblasts.
    Sato M; Miyoshi K; Nagao Y; Nishi Y; Ohtsuka M; Nakamura S; Sakurai T; Watanabe S
    Xenotransplantation; 2014; 21(3):291-300. PubMed ID: 24919525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos.
    Whitworth KM; Lee K; Benne JA; Beaton BP; Spate LD; Murphy SL; Samuel MS; Mao J; O'Gorman C; Walters EM; Murphy CN; Driver J; Mileham A; McLaren D; Wells KD; Prather RS
    Biol Reprod; 2014 Sep; 91(3):78. PubMed ID: 25100712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Generation of Somatic Cell Nuclear Transfer-Competent Porcine Cells with Mutated Alleles at Multiple Target Loci by Using CRISPR/Cas9 Combined with Targeted Toxin-Based Selection System.
    Sato M; Miyoshi K; Nakamura S; Ohtsuka M; Sakurai T; Watanabe S; Kawaguchi H; Tanimoto A
    Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29207527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oocyte electroporation prior to in vitro fertilization is an efficient method to generate single, double, and multiple knockout porcine embryos of interest in biomedicine and animal production.
    Navarro-Serna S; Piñeiro-Silva C; Fernández-Martín I; Dehesa-Etxebeste M; López de Munain A; Gadea J
    Theriogenology; 2024 Apr; 218():111-118. PubMed ID: 38320372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-Step Generation of Multiple Gene-Edited Pigs by Electroporation of the CRISPR/Cas9 System into Zygotes to Reduce Xenoantigen Biosynthesis.
    Tanihara F; Hirata M; Nguyen NT; Sawamoto O; Kikuchi T; Otoi T
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33668187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient genome editing in cultured cells and embryos of Debao pig and swamp buffalo using the CRISPR/Cas9 system.
    Su X; Cui K; Du S; Li H; Lu F; Shi D; Liu Q
    In Vitro Cell Dev Biol Anim; 2018 May; 54(5):375-383. PubMed ID: 29556895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The advancements, challenges, and future implications of the CRISPR/Cas9 system in swine research.
    Zhang J; Khazalwa EM; Abkallo HM; Zhou Y; Nie X; Ruan J; Zhao C; Wang J; Xu J; Li X; Zhao S; Zuo E; Steinaa L; Xie S
    J Genet Genomics; 2021 May; 48(5):347-360. PubMed ID: 34144928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplexed genome engineering for porcine fetal fibroblasts with gRNA-tRNA arrays based on CRISPR/Cas9.
    Guo X; Geng L; Jiang C; Yao W; Jin J; Liu Z; Mu Y
    Anim Biotechnol; 2023 Dec; 34(9):4703-4712. PubMed ID: 36946758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of an MC3R knock-out pig by CRSPR/Cas9 combined with somatic cell nuclear transfer (SCNT) technology.
    Yin Y; Hao H; Xu X; Shen L; Wu W; Zhang J; Li Q
    Lipids Health Dis; 2019 May; 18(1):122. PubMed ID: 31138220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient CRISPR/Cas9-mediated gene editing in Guangdong small-ear spotted pig cells using an optimized electrotransfection method.
    Wei YY; Zhan QM; Zhu XX; Yan AF; Feng J; Liu L; Li JH; Tang DS
    Biotechnol Lett; 2020 Nov; 42(11):2091-2109. PubMed ID: 32494996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current progress of genome editing in livestock.
    Lee K; Uh K; Farrell K
    Theriogenology; 2020 Jul; 150():229-235. PubMed ID: 32000993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viable pigs after simultaneous inactivation of porcine MHC class I and three xenoreactive antigen genes GGTA1, CMAH and B4GALNT2.
    Fischer K; Rieblinger B; Hein R; Sfriso R; Zuber J; Fischer A; Klinger B; Liang W; Flisikowski K; Kurome M; Zakhartchenko V; Kessler B; Wolf E; Rieben R; Schwinzer R; Kind A; Schnieke A
    Xenotransplantation; 2020 Jan; 27(1):e12560. PubMed ID: 31591751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole-Genome Sequencing Reveals Rare Off-Target Mutations in
    Li Z; Lan J; Shi X; Lu T; Hu X; Liu X; Chen Y; He Z
    CRISPR J; 2024 Feb; 7(1):29-40. PubMed ID: 38353621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of α1,3-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase gene double-deficient pigs by CRISPR/Cas9 and handmade cloning.
    Gao H; Zhao C; Xiang X; Li Y; Zhao Y; Li Z; Pan D; Dai Y; Hara H; Cooper DK; Cai Z; Mou L
    J Reprod Dev; 2017 Feb; 63(1):17-26. PubMed ID: 27725344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.