These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 36584242)

  • 1. Rational Design of Diamond Electrodes.
    Yang N; Jiang X
    Acc Chem Res; 2023 Jan; 56(2):117-127. PubMed ID: 36584242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conductive diamond: synthesis, properties, and electrochemical applications.
    Yang N; Yu S; Macpherson JV; Einaga Y; Zhao H; Zhao G; Swain GM; Jiang X
    Chem Soc Rev; 2019 Jan; 48(1):157-204. PubMed ID: 30444227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boron-doped diamond electrode: synthesis, characterization, functionalization and analytical applications.
    Luong JH; Male KB; Glennon JD
    Analyst; 2009 Oct; 134(10):1965-79. PubMed ID: 19768202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Electrocatalytic behavior of diamond electrode for organic pollutant].
    Zhao GH; Li ML; Wu WW; Li RB; He XC
    Huan Jing Ke Xue; 2004 Sep; 25(5):163-7. PubMed ID: 15623046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical performance of diamond thin-film electrodes from different commercial sources.
    Fischer AE; Show Y; Swain GM
    Anal Chem; 2004 May; 76(9):2553-60. PubMed ID: 15117197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractional surface termination of diamond by electrochemical oxidation.
    Hoffmann R; Obloh H; Tokuda N; Yang N; Nebel CE
    Langmuir; 2012 Jan; 28(1):47-50. PubMed ID: 22172282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphdiyne Electrochemistry: Progress and Perspectives.
    Chen X; Jiang X; Yang N
    Small; 2022 Jun; 18(24):e2201135. PubMed ID: 35429089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical grafting of boron-doped single-crystalline chemical vapor deposition diamond with nitrophenyl molecules.
    Uetsuka H; Shin D; Tokuda N; Saeki K; Nebel CE
    Langmuir; 2007 Mar; 23(6):3466-72. PubMed ID: 17291021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale Electrochemistry of sp(2) Carbon Materials: From Graphite and Graphene to Carbon Nanotubes.
    Unwin PR; Güell AG; Zhang G
    Acc Chem Res; 2016 Sep; 49(9):2041-8. PubMed ID: 27501067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boron-Doped Diamond Electrodes: Fundamentals for Electrochemical Applications.
    Einaga Y
    Acc Chem Res; 2022 Dec; 55(24):3605-3615. PubMed ID: 36475616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleosides and ODN electrochemical detection onto boron doped diamond electrodes.
    Fortin E; Chane-Tune J; Mailley P; Szunerits S; Marcus B; Petit JP; Mermoux M; Vieil E
    Bioelectrochemistry; 2004 Jun; 63(1-2):303-6. PubMed ID: 15110292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical Thin Layers in Nanostructures for Energy Storage.
    Noked M; Liu C; Hu J; Gregorczyk K; Rubloff GW; Lee SB
    Acc Chem Res; 2016 Oct; 49(10):2336-2346. PubMed ID: 27636834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge transport across high surface area metal/diamond nanostructured composites.
    Plana D; Humphrey JJ; Bradley KA; Celorrio V; Fermín DJ
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):2985-90. PubMed ID: 23510528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diamond network: template-free fabrication and properties.
    Zhuang H; Yang N; Fu H; Zhang L; Wang C; Huang N; Jiang X
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5384-90. PubMed ID: 25697278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance.
    Achilleos DS; Hatton TA
    J Colloid Interface Sci; 2015 Jun; 447():282-301. PubMed ID: 25711524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bottom-Up Evolution of Diamond-Graphite Hybrid Two-Dimensional Nanostructure: Underlying Picture and Electrochemical Activity.
    Cho JM; Ko YJ; Lee HJ; Choi HJ; Baik YJ; Park JK; Kwak JY; Kim J; Park J; Jeong Y; Kim I; Lee KS; Lee WS
    Small; 2022 Feb; 18(8):e2105087. PubMed ID: 34894074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electro-oxidation and amperometric detection of chlorinated phenols at boron-doped diamond electrodes: a comparison of microcrystalline and nanocrystalline thin films.
    Muna GW; Tasheva N; Swain GM
    Environ Sci Technol; 2004 Jul; 38(13):3674-82. PubMed ID: 15296320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein-modified nanocrystalline diamond thin films for biosensor applications.
    Härtl A; Schmich E; Garrido JA; Hernando J; Catharino SC; Walter S; Feulner P; Kromka A; Steinmüller D; Stutzmann M
    Nat Mater; 2004 Oct; 3(10):736-42. PubMed ID: 15359341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interlayer Affected Diamond Electrochemistry.
    Chen X; Dong X; Zhang C; Zhu M; Ahmed E; Krishnamurthy G; Rouzbahani R; Pobedinskas P; Gauquelin N; Jannis D; Kaur K; Hafez AME; Thiel F; Bornemann R; Engelhard C; Schönherr H; Verbeeck J; Haenen K; Jiang X; Yang N
    Small Methods; 2024 Jun; ():e2301774. PubMed ID: 38874124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boron-doped diamond electrodes for the electrochemical oxidation and cleavage of peptides.
    Roeser J; Alting NF; Permentier HP; Bruins AP; Bischoff R
    Anal Chem; 2013 Jul; 85(14):6626-32. PubMed ID: 23763302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.