These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36584277)

  • 1. Quantitative Tomographic Laser Absorption Imaging of Atomic Potassium during Combustion of Potassium Chloride Salt and Biomass.
    Thorin E; Paiva EM; Schmidt FM
    Anal Chem; 2023 Jan; 95(2):1140-1148. PubMed ID: 36584277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultraviolet Absorption Cross Sections of KOH and KCl for Nonintrusive Species-Specific Quantitative Detection in Hot Flue Gases.
    Weng W; Brackmann C; Leffler T; Aldén M; Li Z
    Anal Chem; 2019 Apr; 91(7):4719-4726. PubMed ID: 30835101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable Diode Laser Atomic Absorption Spectroscopy for Detection of Potassium under Optically Thick Conditions.
    Qu Z; Steinvall E; Ghorbani R; Schmidt FM
    Anal Chem; 2016 Apr; 88(7):3754-60. PubMed ID: 26938713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium and potassium released from burning particles of brown coal and pine wood in a laminar premixed methane flame using quantitative laser-induced breakdown spectroscopy.
    Hsu LJ; Alwahabi ZT; Nathan GJ; Li Y; Li ZS; Aldén M
    Appl Spectrosc; 2011 Jun; 65(6):684-91. PubMed ID: 21639991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ measurement technique for simultaneous detection of K, KCl, and KOH vapors released during combustion of solid biomass fuel in a single particle reactor.
    Sorvajärvi T; DeMartini N; Rossi J; Toivonen J
    Appl Spectrosc; 2014; 68(2):179-84. PubMed ID: 24480273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Online determination of potassium and sodium release behaviour during single particle biomass combustion by FES and ICP-MS.
    Paulauskas R; Striūgas N; Sadeckas M; Sommersacher P; Retschitzegger S; Kienzl N
    Sci Total Environ; 2020 Dec; 746():141162. PubMed ID: 32758988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser-Induced Photofragmentation Fluorescence Imaging of Alkali Compounds in Flames.
    Leffler T; Brackmann C; Aldén M; Li Z
    Appl Spectrosc; 2017 Jun; 71(6):1289-1299. PubMed ID: 28534679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectrally Resolved Ultraviolet (UV) Absorption Cross-Sections of Alkali Hydroxides and Chlorides Measured in Hot Flue Gases.
    Weng W; Leffler T; Brackmann C; Aldén M; Li Z
    Appl Spectrosc; 2018 Sep; 72(9):1388-1395. PubMed ID: 29589783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A kinetic study on the catalysis of KCl, K
    Deng S; Wang X; Zhang J; Liu Z; Mikulčić H; Vujanović M; Tan H; Duić N
    J Environ Manage; 2018 Jul; 218():50-58. PubMed ID: 29665486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical Study and Experimental Verification of Biomass Conversion and Potassium Release in a 140 kW Entrained Flow Gasifier.
    Mousavi SM; Thorin E; Schmidt FM; Sepman A; Bai XS; Fatehi H
    Energy Fuels; 2023 Jan; 37(2):1116-1130. PubMed ID: 36705624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-repetition-rate combustion thermometry with two-line atomic fluorescence excited by diode lasers.
    Chrystie RS; Burns IS; Hult J; Kaminski CF
    Opt Lett; 2009 Aug; 34(16):2492-4. PubMed ID: 19684826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2D mid-infrared laser-absorption imaging for tomographic reconstruction of temperature and carbon monoxide in laminar flames.
    Tancin RJ; Spearrin RM; Goldenstein CS
    Opt Express; 2019 May; 27(10):14184-14198. PubMed ID: 31163871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ detection of potassium atoms in high-temperature coal-combustion systems using near-infrared-diode lasers.
    Schlosser E; Fernholz T; Teichert H; Ebert V
    Spectrochim Acta A Mol Biomol Spectrosc; 2002 Sep; 58(11):2347-59. PubMed ID: 12353684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ laser measurement of oxygen concentration and flue gas temperature utilizing chemical reaction kinetics.
    Viljanen J; Sorvajärvi T; Toivonen J
    Opt Lett; 2017 Dec; 42(23):4925-4928. PubMed ID: 29216146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TDLAS-based photofragmentation spectroscopy for detection of K and KOH in flames under optically thick conditions.
    Thorin E; Schmidt FM
    Opt Lett; 2020 Sep; 45(18):5230-5233. PubMed ID: 32932498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ combustion measurements of CO with diode-laser absorption near 2.3 microm.
    Wang J; Maiorov M; Baer DS; Garbuzov DZ; Connolly JC; Hanson RK
    Appl Opt; 2000 Oct; 39(30):5579-89. PubMed ID: 18354555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tomographic laser absorption imaging of combustion species and temperature in the mid-wave infrared.
    Wei C; Pineda DI; Goldenstein CS; Spearrin RM
    Opt Express; 2018 Aug; 26(16):20944-20951. PubMed ID: 30119401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Principle, calibration, and application of the in situ alkali chloride monitor.
    Forsberg C; Broström M; Backman R; Edvardsson E; Badiei S; Berg M; Kassman H
    Rev Sci Instrum; 2009 Feb; 80(2):023104. PubMed ID: 19256637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultraviolet Absorption Cross-Sections of Ammonia at Elevated Temperatures for Nonintrusive Quantitative Detection in Combustion Environments.
    Weng W; Li S; Aldén M; Li Z
    Appl Spectrosc; 2021 Sep; 75(9):1168-1177. PubMed ID: 33464157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Hydrogen Chloride Detection in Combustion Environments Using Tunable Diode Laser Absorption Spectroscopy with Comprehensive Investigation of Hot Water Interference.
    Weng W; Larsson J; Bood J; Aldén M; Li Z
    Appl Spectrosc; 2022 Feb; 76(2):207-215. PubMed ID: 34981992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.