BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 36584528)

  • 21. Affinity-selected filamentous bacteriophage as a probe for acoustic wave biodetectors of Salmonella typhimurium.
    Olsen EV; Sorokulova IB; Petrenko VA; Chen IH; Barbaree JM; Vodyanoy VJ
    Biosens Bioelectron; 2006 Feb; 21(8):1434-42. PubMed ID: 16085408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Combination of Salmonella Phage ST-3 and Antibiotics to Prevent Salmonella Typhimurium In Vitro.
    Lu M; Liu B; Xiong W; Liu X
    Curr Microbiol; 2022 Oct; 79(12):371. PubMed ID: 36269452
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimizing Bacteriophage Surface Densities for Bacterial Capture and Sensing in Quartz Crystal Microbalance with Dissipation Monitoring.
    Olsson AL; Wargenau A; Tufenkji N
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):13698-706. PubMed ID: 27171886
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of storage conditions and efficiency of a novel microencapsulated Salmonella phage cocktail for controlling S. enteritidis and S. typhimurium in-vitro and in fresh foods.
    Petsong K; Benjakul S; Vongkamjan K
    Food Microbiol; 2019 Oct; 83():167-174. PubMed ID: 31202408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of bacteriophages in sensor development.
    Peltomaa R; López-Perolio I; Benito-Peña E; Barderas R; Moreno-Bondi MC
    Anal Bioanal Chem; 2016 Mar; 408(7):1805-28. PubMed ID: 26472318
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ω-Shaped Fiber-Optic Probe-Based Localized Surface Plasmon Resonance Biosensor for Real-Time Detection of Salmonella Typhimurium.
    Xu Y; Luo Z; Chen J; Huang Z; Wang X; An H; Duan Y
    Anal Chem; 2018 Nov; 90(22):13640-13646. PubMed ID: 30359519
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetostrictive particle based biosensors for in situ and real-time detection of pathogens in water.
    Zhang K; Fu L; Zhang L; Cheng ZY; Huang TS
    Biotechnol Bioeng; 2014 Nov; 111(11):2229-38. PubMed ID: 24890794
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The activity in the chicken alimentary tract of bacteriophages lytic for Salmonella typhimurium.
    Berchieri A; Lovell MA; Barrow PA
    Res Microbiol; 1991 Jun; 142(5):541-9. PubMed ID: 1947426
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual-Mode Biosensor for Simultaneous and Rapid Detection of Live and Whole
    Xu Z; Liu B; Li D; Yu Z; Gan N
    Biosensors (Basel); 2023 Mar; 13(3):. PubMed ID: 36979613
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of phage-mediated control of antibiotic-resistant Salmonella Typhimurium during the transition from planktonic to biofilm cells.
    Dawan J; Ahn J
    Microb Pathog; 2022 Jan; 162():105365. PubMed ID: 34921957
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dysbiosis and intestinal inflammation caused by Salmonella Typhimurium in mice can be alleviated by preadministration of a lytic phage.
    Bao H; Zhang H; Zhou Y; Zhu S; Pang M; Zhang X; Wang Y; Wang J; Olaniran A; Xiao Y; Schmidt S; Wang R
    Microbiol Res; 2022 Jul; 260():127020. PubMed ID: 35462115
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A phage virus-based electrochemical biosensor for highly sensitive detection of ovomucoid.
    Shin JH; Park TJ; Hyun MS; Park JP
    Food Chem; 2022 Jun; 378():132061. PubMed ID: 35032803
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrochemical detection of caspase-3 based on a chemically modified M13 phage virus.
    Shin JH; Gul AR; Hyun MS; Choi CH; Park TJ; Park JP
    Bioelectrochemistry; 2022 Jun; 145():108090. PubMed ID: 35240465
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficiency of Single Phage Suspensions and Phage Cocktail in the Inactivation of
    Costa P; Pereira C; Gomes ATPC; Almeida A
    Microorganisms; 2019 Mar; 7(4):. PubMed ID: 30935094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Salmonella phage akira, infecting selected Salmonella enterica Enteritidis and Typhimurium strains, represents a new lineage of bacteriophages.
    Olsen NS; Lametsch R; Wagner N; Hansen LH; Kot W
    Arch Virol; 2022 Oct; 167(10):2049-2056. PubMed ID: 35764845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of altered binding specificity of bacteriophage for ciprofloxacin-induced antibiotic-resistant Salmonella Typhimurium.
    Kim J; Jo A; Ding T; Lee HY; Ahn J
    Arch Microbiol; 2016 Aug; 198(6):521-9. PubMed ID: 27000396
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of surface functionalization on the surface phage coverage and the subsequent performance of phage-immobilized magnetoelastic biosensors.
    Horikawa S; Bedi D; Li S; Shen W; Huang S; Chen IH; Chai Y; Auad ML; Bozack MJ; Barbaree JM; Petrenko VA; Chin BA
    Biosens Bioelectron; 2011 Jan; 26(5):2361-7. PubMed ID: 21084182
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly sensitive phage-based biosensor for the detection of beta-galactosidase.
    Nanduri V; Balasubramanian S; Sista S; Vodyanoy VJ; Simonian AL
    Anal Chim Acta; 2007 Apr; 589(2):166-72. PubMed ID: 17418177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phage resistance-mediated trade-offs with antibiotic resistance in Salmonella Typhimurium.
    Laure NN; Ahn J
    Microb Pathog; 2022 Oct; 171():105732. PubMed ID: 36002113
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetically Engineered Phage-Templated MnO2 Nanowires: Synthesis and Their Application in Electrochemical Glucose Biosensor Operated at Neutral pH Condition.
    Han L; Shao C; Liang B; Liu A
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):13768-76. PubMed ID: 27228383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.