These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 36584619)

  • 1. Repeated conditionally automated driving on the road: How do drivers leave the loop over time?
    Dillmann J; Den Hartigh RJR; Kurpiers CM; Raisch FK; Kadrileev N; Cox RFA; De Waard D
    Accid Anal Prev; 2023 Mar; 181():106927. PubMed ID: 36584619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drivers' gaze patterns when resuming control with a head-up-display: Effects of automation level and time budget.
    Xu C; Louw TL; Merat N; Li P; Hu M; Li Y
    Accid Anal Prev; 2023 Feb; 180():106905. PubMed ID: 36508949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Keeping the driver in the loop through semi-automated or manual lane changes in conditionally automated driving.
    Dillmann J; den Hartigh RJR; Kurpiers CM; Pelzer J; Raisch FK; Cox RFA; de Waard D
    Accid Anal Prev; 2021 Nov; 162():106397. PubMed ID: 34563644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Driver Visual Attention Before and After Take-Over Requests During Automated Driving on Public Roads.
    Pipkorn L; Dozza M; Tivesten E
    Hum Factors; 2024 Feb; 66(2):336-347. PubMed ID: 35708240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drivers' Performance in Non-critical Take-Overs From an Automated Driving System-An On-Road Study.
    Rydström A; Mullaart MS; Novakazi F; Johansson M; Eriksson A
    Hum Factors; 2023 Dec; 65(8):1841-1857. PubMed ID: 35212565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A user study of directional tactile and auditory user interfaces for take-over requests in conditionally automated vehicles.
    Gruden T; Tomažič S; Sodnik J; Jakus G
    Accid Anal Prev; 2022 Sep; 174():106766. PubMed ID: 35785713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Driver response and recovery following automation initiated disengagement in real-world hands-free driving.
    Gershon P; Mehler B; Reimer B
    Traffic Inj Prev; 2023; 24(4):356-361. PubMed ID: 36988583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Driver-initiated take-overs during critical evasion maneuvers in automated driving.
    Becker S; Brandenburg S; Thüring M
    Accid Anal Prev; 2024 Jan; 194():107362. PubMed ID: 37931430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The monitoring requests on young driver's fatigue and take-over performance in prolonged conditional automated driving.
    Yin J; Shao H; Zhang X
    J Safety Res; 2024 Feb; 88():285-292. PubMed ID: 38485370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Driver-initiated take-overs during critical braking maneuvers in automated driving - The role of time headway, traction usage, and trust in automation.
    Becker S; Brandenburg S; Thüring M
    Accid Anal Prev; 2022 Sep; 174():106725. PubMed ID: 35878555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What happens when drivers of automated vehicles take over control in critical brake situations?
    Roche F; Thüring M; Trukenbrod AK
    Accid Anal Prev; 2020 Sep; 144():105588. PubMed ID: 32531374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noncritical State Transitions During Conditionally Automated Driving on German Freeways: Effects of Non-Driving Related Tasks on Takeover Time and Takeover Quality.
    Naujoks F; Purucker C; Wiedemann K; Marberger C
    Hum Factors; 2019 Jun; 61(4):596-613. PubMed ID: 30689440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding take-over performance of high crash risk drivers during conditionally automated driving.
    Lin Q; Li S; Ma X; Lu G
    Accid Anal Prev; 2020 Aug; 143():105543. PubMed ID: 32485431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective cues for accelerating young drivers' time to transfer control following a period of conditional automation.
    Wright TJ; Agrawal R; Samuel S; Wang Y; Zilberstein S; Fisher DL
    Accid Anal Prev; 2018 Jul; 116():14-20. PubMed ID: 29031513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Get Ready for Take-Overs: Using Head-Up Display for Drivers to Engage in Non-Driving-Related Tasks in Automated Vehicles.
    Li X; Schroeter R; Rakotonirainy A; Kuo J; Lenné MG
    Hum Factors; 2023 Dec; 65(8):1759-1775. PubMed ID: 34865560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of motor control requirements on drivers' eye-gaze pattern during automated driving.
    Goncalves RC; Louw TL; Quaresma M; Madigan R; Merat N
    Accid Anal Prev; 2020 Dec; 148():105788. PubMed ID: 33039820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introduction matters: Manipulating trust in automation and reliance in automated driving.
    Körber M; Baseler E; Bengler K
    Appl Ergon; 2018 Jan; 66():18-31. PubMed ID: 28958427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Psychophysiological responses to takeover requests in conditionally automated driving.
    Du N; Yang XJ; Zhou F
    Accid Anal Prev; 2020 Dec; 148():105804. PubMed ID: 33128991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of information from dash-based human-machine interfaces on drivers' gaze patterns and lane-change manoeuvres after conditionally automated driving.
    Gonçalves RC; Louw TL; Madigan R; Quaresma M; Romano R; Merat N
    Accid Anal Prev; 2022 Sep; 174():106726. PubMed ID: 35716544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of takeover request lead time on drivers' situation awareness for manually exiting from freeways: A web-based study on level 3 automated vehicles.
    Tan X; Zhang Y
    Accid Anal Prev; 2022 Apr; 168():106593. PubMed ID: 35180465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.