BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 36584659)

  • 1. Effect of different co-foaming agents on PFAS removal from the environment by foam fractionation.
    Buckley T; Karanam K; Han H; Vo HNP; Shukla P; Firouzi M; Rudolph V
    Water Res; 2023 Feb; 230():119532. PubMed ID: 36584659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cationic surfactant-assisted foam fractionation enhances the removal of short-chain perfluoroalkyl substances from impacted water.
    Lee CS; Venkatesan AK
    Chemosphere; 2024 Jun; 362():142614. PubMed ID: 38878978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drinking water nanofiltration with concentrate foam fractionation-A novel approach for removal of per- and polyfluoroalkyl substances (PFAS).
    McCleaf P; Stefansson W; Ahrens L
    Water Res; 2023 Apr; 232():119688. PubMed ID: 36764110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Foam fractionation of per- and polyfluoroalkyl substances (PFASs) in landfill leachate using different cosurfactants.
    Vo PHN; Buckley T; Xu X; Nguyen TMH; Rudolph V; Shukla P
    Chemosphere; 2023 Jan; 310():136869. PubMed ID: 36272629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PFAS removal from landfill leachate by ozone foam fractionation: System optimization and adsorption quantification.
    Vo PHN; Nguyen TTP; Nguyen HTM; Baulch J; Dong S; Nguyen CV; Thai PK; Nguyen AV
    Water Res; 2024 Apr; 253():121300. PubMed ID: 38367385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using foam fractionation to estimate PFAS air-water interface adsorption behaviour at ng/L and µg/L concentrations.
    Buckley T; Vuong T; Karanam K; Vo PHN; Shukla P; Firouzi M; Rudolph V
    Water Res; 2023 Jul; 239():120028. PubMed ID: 37209512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of surfactant and solution composition on PFAS adsorption at fluid-fluid interfaces.
    Brusseau ML; Van Glubt S
    Water Res; 2019 Sep; 161():17-26. PubMed ID: 31174056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting Interfacial Tension and Adsorption at Fluid-Fluid Interfaces for Mixtures of PFAS and/or Hydrocarbon Surfactants.
    Guo B; Saleem H; Brusseau ML
    Environ Sci Technol; 2023 May; 57(21):8044-8052. PubMed ID: 37204869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental applications of a biodegradable cysteine-based surfactant.
    Taseidifar M
    Ecotoxicol Environ Saf; 2020 Dec; 206():111389. PubMed ID: 32987265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobic Sorption Properties of an Extended Series of Anionic Per- and Polyfluoroalkyl Substances Characterized by C
    Endo S; Matsuzawa S
    Environ Sci Technol; 2024 Apr; 58(17):7628-7635. PubMed ID: 38646668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic Study on the Removal of Per- and Polyfluoroalkyl Substances from Contaminated Groundwater Using Metal-Organic Frameworks.
    Li R; Alomari S; Islamoglu T; Farha OK; Fernando S; Thagard SM; Holsen TM; Wriedt M
    Environ Sci Technol; 2021 Nov; 55(22):15162-15171. PubMed ID: 34714637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foam fractionation for removal of per- and polyfluoroalkyl substances: Towards closing the mass balance.
    Smith SJ; Lewis J; Wiberg K; Wall E; Ahrens L
    Sci Total Environ; 2023 May; 871():162050. PubMed ID: 36758489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of foam fractionation for the removal of per- and polyfluoroalkyl substances (PFAS) from aqueous matrices.
    We ACE; Zamyadi A; Stickland AD; Clarke BO; Freguia S
    J Hazard Mater; 2024 Mar; 465():133182. PubMed ID: 38071776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fundamental model for calculating interfacial adsorption of complex ionic and nonionic PFAS mixtures in the presence of mixed salts.
    Gao Y; Le ST; Kibbey TCG; Glamore W; O'Carroll DM
    Environ Sci Process Impacts; 2023 Nov; 25(11):1830-1838. PubMed ID: 36987664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Foam Separation of Dyes Using Anionic, Cationic, and Amphoteric Surfactants.
    Goto Y; Nema Y; Matsuoka K
    J Oleo Sci; 2020; 69(6):549-555. PubMed ID: 32522916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic model of PFAS removal by semi-batch foam fractionation and validation by experimental data for K-PFOS.
    Wang J; Niven RK; Morrison A; Wilson SP; Strezov V; Taylor MP
    Sci Total Environ; 2023 Mar; 865():161145. PubMed ID: 36572310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pilot-Scale Continuous Foam Fractionation for the Removal of Per- and Polyfluoroalkyl Substances (PFAS) from Landfill Leachate.
    Smith SJ; Wiberg K; McCleaf P; Ahrens L
    ACS ES T Water; 2022 May; 2(5):841-851. PubMed ID: 35603039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculating PFAS interfacial adsorption as a function of salt concentration using model parameters determined from chemical structure.
    Le ST; Gao Y; Kibbey TCG; O'Carroll DM
    Sci Total Environ; 2022 Nov; 848():157663. PubMed ID: 35907553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial complexation of a neutral amphiphilic 'tardigrade' co-polymer with a cationic surfactant: Transition from synergy to competition.
    Slastanova A; Campbell RA; Islas L; Welbourn RJL; R P Webster J; Vaccaro M; Chen M; Robles E; Briscoe WH
    J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1064-1076. PubMed ID: 34487929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PFAS removal by ion exchange resins: A review.
    Dixit F; Dutta R; Barbeau B; Berube P; Mohseni M
    Chemosphere; 2021 Jun; 272():129777. PubMed ID: 33582507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.