These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 36584825)
21. Native fungi as metal remediators: Silver myco-accumulation from metal contaminated waste-rock dumps (Libiola Mine, Italy). Cecchi G; Marescotti P; Di Piazza S; Zotti M J Environ Sci Health B; 2017 Mar; 52(3):191-195. PubMed ID: 28121268 [TBL] [Abstract][Full Text] [Related]
22. Rahnella sp. LRP3 induces phosphate precipitation of Cu (II) and its role in copper-contaminated soil remediation. Zhao X; Do H; Zhou Y; Li Z; Zhang X; Zhao S; Li M; Wu D J Hazard Mater; 2019 Apr; 368():133-140. PubMed ID: 30669037 [TBL] [Abstract][Full Text] [Related]
23. Biodegradation of crude oil and n-alkanes by fungi isolated from Oman. Elshafie A; AlKindi AY; Al-Busaidi S; Bakheit C; Albahry SN Mar Pollut Bull; 2007 Nov; 54(11):1692-6. PubMed ID: 17904586 [TBL] [Abstract][Full Text] [Related]
24. Bioaccumulation of Cu, Fe, Mn and Zn in native Brachystegia longifolia naturally growing in a copper mining environment of Mufulira, Zambia. Mulenga C; Clarke C; Meincken M Environ Monit Assess; 2021 Dec; 194(1):8. PubMed ID: 34874469 [TBL] [Abstract][Full Text] [Related]
25. An Abandoned Copper Mining Site in Cyprus and Assessment of Metal Concentrations in Plants and Soil. Baycu G; Tolunay D; Ozden H; Csatari I; Karadag S; Agba T; Rognes SE Int J Phytoremediation; 2015; 17(7):622-31. PubMed ID: 25976876 [TBL] [Abstract][Full Text] [Related]
27. Tolerance to heavy metals in filamentous fungi isolated from contaminated mining soils in the Zanjan Province, Iran. Mohammadian E; Babai Ahari A; Arzanlou M; Oustan S; Khazaei SH Chemosphere; 2017 Oct; 185():290-296. PubMed ID: 28700958 [TBL] [Abstract][Full Text] [Related]
28. Risk assessment and copper geochemistry of an orchard irrigated with mine water: a case study in the semiarid region of Brazil. Oliveira DP; Nóbrega GN; Ruiz F; Perlatti F; Soares AA; Otero XL; Ferreira TO Environ Geochem Health; 2019 Apr; 41(2):603-615. PubMed ID: 30022342 [TBL] [Abstract][Full Text] [Related]
29. Availability of copper in mine tailings with humic substance addition and uptake by Atriplex halimus. Tapia Y; Casanova M; Castillo B; Acuña E; Covarrubias J; Antilén M; Masaguer A Environ Monit Assess; 2019 Oct; 191(11):651. PubMed ID: 31628547 [TBL] [Abstract][Full Text] [Related]
30. [Petridium revolutum, a promising plant for phytoremediation of Cu-polluted soil]. Zheng J; Lou L; Wang S; Tang S Ying Yong Sheng Tai Xue Bao; 2006 Mar; 17(3):507-11. PubMed ID: 16724752 [TBL] [Abstract][Full Text] [Related]
31. Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation. Yang Y; Liang Y; Ghosh A; Song Y; Chen H; Tang M Environ Sci Pollut Res Int; 2015 Sep; 22(17):13179-93. PubMed ID: 25929455 [TBL] [Abstract][Full Text] [Related]
32. Changes in the sorption, desorption, distribution, and availability of copper, induced by application of sewage sludge on Chilean soils contaminated by mine tailings. Garrido T; Mendoza J; Arriagada F J Environ Sci (China); 2012; 24(5):912-8. PubMed ID: 22893970 [TBL] [Abstract][Full Text] [Related]
33. Spatial-based assessment of metal contamination in agricultural soils near an abandoned copper mine of eastern China. Qin C; Luo C; Chen Y; Shen Z Bull Environ Contam Toxicol; 2012 Jul; 89(1):113-8. PubMed ID: 22526992 [TBL] [Abstract][Full Text] [Related]
34. Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Zafar S; Aqil F; Ahmad I Bioresour Technol; 2007 Sep; 98(13):2557-61. PubMed ID: 17113284 [TBL] [Abstract][Full Text] [Related]
35. Nonequilibrium leaching behavior of metallic elements (Cu, Zn, As, Cd, and Pb) from soils collected from long-term abandoned mine sites. Kim J; Hyun S Chemosphere; 2015 Sep; 134():150-8. PubMed ID: 25935604 [TBL] [Abstract][Full Text] [Related]
36. Laraib Q; Shafique M; Jabeen N; Naz SA; Nawaz HR; Solangi B; Zubair A; Sohail M Pol J Microbiol; 2020 Sep; 69(2):193-203. PubMed ID: 32548988 [TBL] [Abstract][Full Text] [Related]
37. Copper release from waste rocks in an abandoned mine (NE, Brazil) and its impacts on ecosystem environmental quality. Perlatti F; Martins EP; de Oliveira DP; Ruiz F; Asensio V; Rezende CF; Otero XL; Ferreira TO Chemosphere; 2021 Jan; 262():127843. PubMed ID: 32777614 [TBL] [Abstract][Full Text] [Related]
38. Remediation of copper-contaminated soils using Fu L; Zhang L; Dong P; Wang J; Shi L; Lian C; Shen Z; Chen Y Int J Phytoremediation; 2022; 24(10):1107-1119. PubMed ID: 34775850 [TBL] [Abstract][Full Text] [Related]
39. Comparison of tolerance and biosorption of three trace metals (Cd, Cu, Pb) by the soil fungus Absidia cylindrospora. Albert Q; Leleyter L; Lemoine M; Heutte N; Rioult JP; Sage L; Baraud F; Garon D Chemosphere; 2018 Apr; 196():386-392. PubMed ID: 29316464 [TBL] [Abstract][Full Text] [Related]
40. Ecological network analysis reveals distinctive microbial modules associated with heavy metal contamination of abandoned mine soils in Korea. Chun SJ; Kim YJ; Cui Y; Nam KH Environ Pollut; 2021 Nov; 289():117851. PubMed ID: 34358869 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]