These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36584909)

  • 1. PARP1 controls the transcription of CD24 by ADP-ribosylating the RNA helicase DDX5 in pancreatic cancer.
    Chen K; Dai M; Luo Q; Wang Y; Shen W; Liao Y; Zhou Y; Cheng W
    Int J Biochem Cell Biol; 2023 Feb; 155():106358. PubMed ID: 36584909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting PARP2 and PARP1 trapping through quantitative live-cell imaging.
    Zhang H; Lin X; Zha S
    Biochem Soc Trans; 2022 Aug; 50(4):1169-1177. PubMed ID: 35959996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(ADP-ribose) Polymerase (PARP) and PARP Inhibitors: Mechanisms of Action and Role in Cardiovascular Disorders.
    Henning RJ; Bourgeois M; Harbison RD
    Cardiovasc Toxicol; 2018 Dec; 18(6):493-506. PubMed ID: 29968072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective PARP1 inhibitors, PARP1-based dual-target inhibitors, PROTAC PARP1 degraders, and prodrugs of PARP1 inhibitors for cancer therapy.
    Peng X; Pan W; Jiang F; Chen W; Qi Z; Peng W; Chen J
    Pharmacol Res; 2022 Dec; 186():106529. PubMed ID: 36328301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatorial Efficacy of Olaparib with Radiation and ATR Inhibitor Requires PARP1 Protein in Homologous Recombination-Proficient Pancreatic Cancer.
    Parsels LA; Engelke CG; Parsels J; Flanagan SA; Zhang Q; Tanska D; Wahl DR; Canman CE; Lawrence TS; Morgan MA
    Mol Cancer Ther; 2021 Feb; 20(2):263-273. PubMed ID: 33268569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Medicinal chemistry approaches of poly ADP-Ribose polymerase 1 (PARP1) inhibitors as anticancer agents - A recent update.
    Jain PG; Patel BD
    Eur J Med Chem; 2019 Mar; 165():198-215. PubMed ID: 30684797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Therapeutic Targeting of Poly(ADP-Ribose) Polymerase-1 (PARP1) in Cancer: Current Developments, Therapeutic Strategies, and Future Opportunities.
    Rajawat J; Shukla N; Mishra DP
    Med Res Rev; 2017 Nov; 37(6):1461-1491. PubMed ID: 28510338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PARP mediated DNA damage response, genomic stability and immune responses.
    Zong C; Zhu T; He J; Huang R; Jia R; Shen J
    Int J Cancer; 2022 Jun; 150(11):1745-1759. PubMed ID: 34952967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PARP1: Structural insights and pharmacological targets for inhibition.
    Spiegel JO; Van Houten B; Durrant JD
    DNA Repair (Amst); 2021 Jul; 103():103125. PubMed ID: 33940558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New perspectives on the plant PARP family: Arabidopsis PARP3 is inactive, and PARP1 exhibits predominant poly (ADP-ribose) polymerase activity in response to DNA damage.
    Gu Z; Pan W; Chen W; Lian Q; Wu Q; Lv Z; Cheng X; Ge X
    BMC Plant Biol; 2019 Aug; 19(1):364. PubMed ID: 31426748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical PARP inhibitors do not abrogate PARP1 exchange at DNA damage sites in vivo.
    Shao Z; Lee BJ; Rouleau-Turcotte É; Langelier MF; Lin X; Estes VM; Pascal JM; Zha S
    Nucleic Acids Res; 2020 Sep; 48(17):9694-9709. PubMed ID: 32890402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PARP1-modulated chromatin remodeling is a new target for cancer treatment.
    Sinha S; Molla S; Kundu CN
    Med Oncol; 2021 Aug; 38(10):118. PubMed ID: 34432161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphatase 1 Nuclear Targeting Subunit Mediates Recruitment and Function of Poly (ADP-Ribose) Polymerase 1 in DNA Repair.
    Wang F; Zhu S; Fisher LA; Wang L; Eurek NJ; Wahl JK; Lan L; Peng A
    Cancer Res; 2019 May; 79(10):2526-2535. PubMed ID: 30733193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MORC2 regulates DNA damage response through a PARP1-dependent pathway.
    Zhang L; Li DQ
    Nucleic Acids Res; 2019 Sep; 47(16):8502-8520. PubMed ID: 31616951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studying PAR-Dependent Chromatin Remodeling to Tackle PARPi Resistance.
    Andronikou C; Rottenberg S
    Trends Mol Med; 2021 Jul; 27(7):630-642. PubMed ID: 34030964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Molecular mechanisms of regulaion of transcription by PARP1].
    Maliuchenko NV; Kulaeva OI; Kotova E; Chupyrkina AA; Nikitin DV; Kirpichnikov MP; Studitskiĭ VM
    Mol Biol (Mosk); 2015; 49(1):99-113. PubMed ID: 25916114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined EGFR1 and PARP1 Inhibition Enhances the Effect of Radiation in Head and Neck Squamous Cell Carcinoma Models.
    Frederick BA; Gupta R; Atilano-Roque A; Su TT; Raben D
    Radiat Res; 2020 Nov; 194(5):519-531. PubMed ID: 32936912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, synthesis and mechanism studies of novel dual PARP1/BRD4 inhibitors against pancreatic cancer.
    Huang SH; Cao R; Lin QW; Wu SQ; Gao LL; Sun Q; Zhu QH; Zou Y; Xu YG; Wang SP
    Eur J Med Chem; 2022 Feb; 230():114116. PubMed ID: 35091172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins.
    Alemasova EE; Lavrik OI
    Nucleic Acids Res; 2019 May; 47(8):3811-3827. PubMed ID: 30799503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A unified mechanism for PARP inhibitor-induced PARP1 chromatin retention at DNA damage sites in living cells.
    Kanev PB; Varhoshkova S; Georgieva I; Lukarska M; Kirova D; Danovski G; Stoynov S; Aleksandrov R
    Cell Rep; 2024 May; 43(5):114234. PubMed ID: 38758646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.