These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 36585374)

  • 1. Aqueous Two-Phase Enabled Low Viscosity 3D (LoV3D) Bioprinting of Living Matter.
    Becker M; Gurian M; Schot M; Leijten J
    Adv Sci (Weinh); 2023 Mar; 10(8):e2204609. PubMed ID: 36585374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FRESH-based 3D bioprinting of complex biological geometries using chitosan bioink.
    Chaurasia P; Singh R; Mahto SK
    Biofabrication; 2024 Jul; 16(4):. PubMed ID: 38942010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogels for 3D embedded bioprinting: a focused review on bioinks and support baths.
    Zhou K; Sun Y; Yang J; Mao H; Gu Z
    J Mater Chem B; 2022 Mar; 10(12):1897-1907. PubMed ID: 35212327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gellan Fluid Gel as a Versatile Support Bath Material for Fluid Extrusion Bioprinting.
    Compaan AM; Song K; Huang Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5714-5726. PubMed ID: 30644714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.
    Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T
    Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Modeling and Experimental Characterization of Extrusion Printing into Suspension Baths.
    Prendergast ME; Burdick JA
    Adv Healthc Mater; 2022 Apr; 11(7):e2101679. PubMed ID: 34699689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-Step FRESH Bioprinting of Low-Viscosity Silk Fibroin Inks.
    Sakai S; Morita T
    ACS Biomater Sci Eng; 2022 Jun; 8(6):2589-2597. PubMed ID: 35608818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity.
    Lee M; Bae K; Guillon P; Chang J; Arlov Ø; Zenobi-Wong M
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):37820-37828. PubMed ID: 30360117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered assistive materials for 3D bioprinting: support baths and sacrificial inks.
    Brunel LG; Hull SM; Heilshorn SC
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35487196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Embedded bioprinting for designer 3D tissue constructs with complex structural organization.
    Zeng X; Meng Z; He J; Mao M; Li X; Chen P; Fan J; Li D
    Acta Biomater; 2022 Mar; 140():1-22. PubMed ID: 34875360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects.
    Compaan AM; Song K; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D bioprinting of complex channels within cell-laden hydrogels.
    Ji S; Almeida E; Guvendiren M
    Acta Biomater; 2019 Sep; 95():214-224. PubMed ID: 30831327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Embedded 3D Bioprinting for Engineering Miniaturized In Vitro Tumor Models.
    Monteiro MV; Rocha M; Gaspar VM; Mano JF
    Methods Mol Biol; 2024; 2764():279-288. PubMed ID: 38393601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity.
    Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of Freeform Reversible Embedding of Suspended Hydrogel Microspheres for Substantially Improved Three-Dimensional Bioprinting Capabilities.
    Wu CA; Zhu Y; Venkatesh A; Stark CJ; Lee SH; Woo YJ
    Tissue Eng Part C Methods; 2023 Mar; 29(3):85-94. PubMed ID: 36719778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stepwise Control of Crosslinking in a One-Pot System for Bioprinting of Low-Density Bioinks.
    Soliman BG; Lindberg GCJ; Jungst T; Hooper GJ; Groll J; Woodfield TBF; Lim KS
    Adv Healthc Mater; 2020 Aug; 9(15):e1901544. PubMed ID: 32323473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Embedded Printing of Hydrogels and Watery Suspensions of Cells in Patterned Granular Baths.
    Trikalitis VD; Perea Paizal J; Rangel V; Stein F; Rouwkema J
    Tissue Eng Part C Methods; 2024 May; 30(5):206-216. PubMed ID: 38568935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FRESH bioprinting technology for tissue engineering - the influence of printing process and bioink composition on cell behavior and vascularization.
    Kreimendahl F; Kniebs C; Tavares Sobreiro AM; Schmitz-Rode T; Jockenhoevel S; Thiebes AL
    J Appl Biomater Funct Mater; 2021; 19():22808000211028808. PubMed ID: 34282976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks.
    Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S
    Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulable Supporting Baths for Embedded Printing of Soft Biomaterials with Variable Stiffness.
    Li Q; Ma L; Gao Z; Yin J; Liu P; Yang H; Shen L; Zhou H
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):41695-41711. PubMed ID: 36070996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.