These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36585430)

  • 21. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics.
    Yamada M; Seki M
    Lab Chip; 2005 Nov; 5(11):1233-9. PubMed ID: 16234946
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mixing particle softness in a two-dimensional hopper: Particle rigidity and friction enable variable arch geometry to cause clogging.
    Alborzi S; Abrahamyan D; Hashmi SM
    Phys Rev E; 2023 Feb; 107(2-1):024901. PubMed ID: 36932539
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From cooperative to uncorrelated clogging in cross-flow microfluidic membranes.
    van Zwieten R; van de Laar T; Sprakel J; Schroën K
    Sci Rep; 2018 Apr; 8(1):5687. PubMed ID: 29632362
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Collective dynamics of flowing colloids during pore clogging.
    Agbangla GC; Bacchin P; Climent E
    Soft Matter; 2014 Sep; 10(33):6303-15. PubMed ID: 25029591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic particle sorter employing flow splitting and recombining.
    Yamada M; Seki M
    Anal Chem; 2006 Feb; 78(4):1357-62. PubMed ID: 16478134
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strategic placement of an obstacle suppresses droplet break up in the hopper flow of a microfluidic soft crystal.
    Bick AD; Khor JW; Gai Y; Tang SKY
    Proc Natl Acad Sci U S A; 2021 May; 118(19):. PubMed ID: 33941691
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrodynamic Microparticle Separation Mechanism Using Three-Dimensional Flow Profiles in Dual-Depth and Asymmetric Lattice-Shaped Microchannel Networks.
    Yanai T; Ouchi T; Yamada M; Seki M
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31242547
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Leveraging the elastic deformability of polydimethylsiloxane microfluidic channels for efficient intracellular delivery.
    Alhmoud H; Alkhaled M; Kaynak BE; Hanay MS
    Lab Chip; 2023 Feb; 23(4):714-726. PubMed ID: 36472226
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clogging sensitivity of flow distributors designed for radially elongated hexagonal pillar array columns: a computational modelling.
    Haghighi F; Talebpour Z; Sanati-Nezhad A
    Sci Rep; 2021 Mar; 11(1):4927. PubMed ID: 33654139
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of the internal structure of straight microchannels on inertial transport behavior of particles.
    Dong H; Huang L; Zhao L
    Heliyon; 2024 Apr; 10(8):e29577. PubMed ID: 38655341
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Squeezing multiple soft particles into a constriction: Transition to clogging.
    Bielinski C; Aouane O; Harting J; Kaoui B
    Phys Rev E; 2021 Dec; 104(6-2):065101. PubMed ID: 35030949
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clogging transition of many-particle systems flowing through bottlenecks.
    Zuriguel I; Parisi DR; Hidalgo RC; Lozano C; Janda A; Gago PA; Peralta JP; Ferrer LM; Pugnaloni LA; Clément E; Maza D; Pagonabarraga I; Garcimartín A
    Sci Rep; 2014 Dec; 4():7324. PubMed ID: 25471601
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics of progressive pore clogging by colloidal aggregates.
    Delouche N; Schofield AB; Tabuteau H
    Soft Matter; 2020 Nov; 16(43):9899-9907. PubMed ID: 33026373
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of particle shape on discharge and clogging.
    Hafez A; Liu Q; Finkbeiner T; Alouhali RA; Moellendick TE; Santamarina JC
    Sci Rep; 2021 Feb; 11(1):3309. PubMed ID: 33558548
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intermittent flow and transient congestions of soft spheres passing narrow orifices.
    Harth K; Wang J; Börzsönyi T; Stannarius R
    Soft Matter; 2020 Sep; 16(34):8013-8023. PubMed ID: 32785350
    [TBL] [Abstract][Full Text] [Related]  

  • 36. "From the Edge to the Center": Viscoelastic Migration of Particles and Cells in a Strongly Shear-Thinning Liquid Flowing in a Microchannel.
    Del Giudice F; Sathish S; D'Avino G; Shen AQ
    Anal Chem; 2017 Dec; 89(24):13146-13159. PubMed ID: 29083161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluidic assembly and packing of microspheres in confined channels.
    Vanapalli SA; Iacovella CR; Sung KE; Mukhija D; Millunchick JM; Burns MA; Glotzer SC; Solomon MJ
    Langmuir; 2008 Apr; 24(7):3661-70. PubMed ID: 18294020
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improvement of size-based particle separation throughput in slanted spiral microchannel by modifying outlet geometry.
    Mihandoust A; Maleki-Jirsaraei N; Rouhani S; Safi S; Alizadeh M
    Electrophoresis; 2020 Mar; 41(5-6):353-359. PubMed ID: 32012295
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Particle deposition in a realistic geometry of the human conducting airways: Effects of inlet velocity profile, inhalation flowrate and electrostatic charge.
    Koullapis PG; Kassinos SC; Bivolarova MP; Melikov AK
    J Biomech; 2016 Jul; 49(11):2201-2212. PubMed ID: 26806688
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms of gill-clogging by hagfish slime.
    Taylor L; Chaudhary G; Jain G; Lowe A; Hupe A; Negishi A; Zeng Y; Ewoldt RH; Fudge DS
    J R Soc Interface; 2023 Mar; 20(200):20220774. PubMed ID: 36987615
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.