These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36585454)

  • 1. Multifaceted atlases of the human brain in its infancy.
    Ahmad S; Wu Y; Wu Z; Thung KH; Liu S; Lin W; Li G; Wang L; Yap PT
    Nat Methods; 2023 Jan; 20(1):55-64. PubMed ID: 36585454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of 4D high-definition cortical surface atlases of infants: Methods and applications.
    Li G; Wang L; Shi F; Gilmore JH; Lin W; Shen D
    Med Image Anal; 2015 Oct; 25(1):22-36. PubMed ID: 25980388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereotaxic Magnetic Resonance Imaging Brain Atlases for Infants from 3 to 12 Months.
    Fillmore PT; Richards JE; Phillips-Meek MC; Cryer A; Stevens M
    Dev Neurosci; 2015; 37(6):515-32. PubMed ID: 26440296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of 4D infant cortical surface atlases with sharp folding patterns via spherical patch-based group-wise sparse representation.
    Wu Z; Wang L; Lin W; Gilmore JH; Li G; Shen D
    Hum Brain Mapp; 2019 Sep; 40(13):3860-3880. PubMed ID: 31115143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constructing 4D infant cortical surface atlases based on dynamic developmental trajectories of the cortex.
    Li G; Wang L; Shi F; Lin W; Shen D
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 3):89-96. PubMed ID: 25320786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using clinically acquired MRI to construct age-specific ADC atlases: Quantifying spatiotemporal ADC changes from birth to 6-year old.
    Ou Y; Zöllei L; Retzepi K; Castro V; Bates SV; Pieper S; Andriole KP; Murphy SN; Gollub RL; Grant PE
    Hum Brain Mapp; 2017 Jun; 38(6):3052-3068. PubMed ID: 28371107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated structural and functional atlases of Asian children from infancy to childhood.
    Zhu J; Zhang H; Chong YS; Shek LP; Gluckman PD; Meaney MJ; Fortier MV; Qiu A
    Neuroimage; 2021 Dec; 245():118716. PubMed ID: 34767941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Longitudinal brain atlases of early developing cynomolgus macaques from birth to 48 months of age.
    Zhong T; Wei J; Wu K; Chen L; Zhao F; Pei Y; Wang Y; Zhang H; Wu Z; Huang Y; Li T; Wang L; Chen Y; Ji W; Zhang Y; Li G; Niu Y
    Neuroimage; 2022 Feb; 247():118799. PubMed ID: 34896583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fetal cortical surface atlas parcellation based on growth patterns.
    Xia J; Wang F; Benkarim OM; Sanroma G; Piella G; González Ballester MA; Hahner N; Eixarch E; Zhang C; Shen D; Li G
    Hum Brain Mapp; 2019 Sep; 40(13):3881-3899. PubMed ID: 31106942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 4D infant brain volumetric atlas based on the UNC/UMN baby connectome project (BCP) cohort.
    Chen L; Wu Z; Hu D; Wang Y; Zhao F; Zhong T; Lin W; Wang L; Li G
    Neuroimage; 2022 Jun; 253():119097. PubMed ID: 35301130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Four-dimensional mapping of dynamic longitudinal brain subcortical development and early learning functions in infants.
    Chen L; Wang Y; Wu Z; Shan Y; Li T; Hung SC; Xing L; Zhu H; Wang L; Lin W; Li G
    Nat Commun; 2023 Jun; 14(1):3727. PubMed ID: 37349301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consistent Spatial-Temporal Longitudinal Atlas Construction for Developing Infant Brains.
    Zhang Y; Shi F; Wu G; Wang L; Yap PT; Shen D
    IEEE Trans Med Imaging; 2016 Dec; 35(12):2568-2577. PubMed ID: 27392345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-precision registration between zebrafish brain atlases using symmetric diffeomorphic normalization.
    Marquart GD; Tabor KM; Horstick EJ; Brown M; Geoca AK; Polys NF; Nogare DD; Burgess HA
    Gigascience; 2017 Aug; 6(8):1-15. PubMed ID: 28873968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain templates and atlases.
    Evans AC; Janke AL; Collins DL; Baillet S
    Neuroimage; 2012 Aug; 62(2):911-22. PubMed ID: 22248580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UNC-Emory Infant Atlases for Macaque Brain Image Analysis: Postnatal Brain Development through 12 Months.
    Shi Y; Budin F; Yapuncich E; Rumple A; Young JT; Payne C; Zhang X; Hu X; Godfrey J; Howell B; Sanchez MM; Styner MA
    Front Neurosci; 2016; 10():617. PubMed ID: 28119564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational neuroanatomy of baby brains: A review.
    Li G; Wang L; Yap PT; Wang F; Wu Z; Meng Y; Dong P; Kim J; Shi F; Rekik I; Lin W; Shen D
    Neuroimage; 2019 Jan; 185():906-925. PubMed ID: 29574033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest.
    Gousias IS; Rueckert D; Heckemann RA; Dyet LE; Boardman JP; Edwards AD; Hammers A
    Neuroimage; 2008 Apr; 40(2):672-684. PubMed ID: 18234511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graph-Constrained Sparse Construction of Longitudinal Diffusion-Weighted Infant Atlases.
    Kim J; Chen G; Lin W; Yap PT; Shen D
    Med Image Comput Comput Assist Interv; 2017 Sep; 10433():49-56. PubMed ID: 29568823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of MRI-based atlases of non-human brains.
    Ullmann JF; Janke AL; Reutens D; Watson C
    J Comp Neurol; 2015 Feb; 523(3):391-405. PubMed ID: 25236843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the effect of doubling atlases using midsagittal plane on multi-atlas based segmentation of brain structures.
    Gorthi S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4059-4062. PubMed ID: 28269174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.