BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36585515)

  • 1. Highly stable, antiviral, antibacterial cotton textiles via molecular engineering.
    Qian J; Dong Q; Chun K; Zhu D; Zhang X; Mao Y; Culver JN; Tai S; German JR; Dean DP; Miller JT; Wang L; Wu T; Li T; Brozena AH; Briber RM; Milton DK; Bentley WE; Hu L
    Nat Nanotechnol; 2023 Feb; 18(2):168-176. PubMed ID: 36585515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibacterial and biofilm-inhibiting cotton fabrics decorated with copper nanoparticles grown on graphene nanosheets.
    Kim J; Kang SH; Choi Y; Lee W; Kim N; Tanaka M; Kang SH; Choi J
    Sci Rep; 2023 Jul; 13(1):11947. PubMed ID: 37488203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioactive Lyocell Fibers with Inherent Antibacterial, Antiviral and Antifungal Properties.
    Wendler F; Schulze T; Bauer J; Redlingshöfer B
    Molecules; 2024 Apr; 29(9):. PubMed ID: 38731545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrafibrillar Dispersion of Cuprous Oxide (Cu
    Hillyer MB; Nam S; Condon BD
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36431816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable Fabrication of Highly Breathable Cotton Textiles with Stable Fluorescent, Antibacterial, Hydrophobic, and UV-Blocking Performance.
    Liu H; Guo L; Hu S; Peng F; Zhang X; Yang H; Sui X; Dai Y; Zhou P; Qi H
    ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35844183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Cu Modified Textile Structures on Antibacterial and Antiviral Protection.
    Cieślak M; Kowalczyk D; Krzyżowska M; Janicka M; Witczak E; Kamińska I
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of high and low pathogenic avian influenza virus H5 subtypes by copper ions incorporated in zeolite-textile materials.
    Imai K; Ogawa H; Bui VN; Inoue H; Fukuda J; Ohba M; Yamamoto Y; Nakamura K
    Antiviral Res; 2012 Feb; 93(2):225-233. PubMed ID: 22179064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface modification by carboxymethy chitosan via pad-dry-cure method for binding Ag NPs onto cotton fabric.
    Xu Q; Ke X; Shen L; Ge N; Zhang Y; Fu F; Liu X
    Int J Biol Macromol; 2018 May; 111():796-803. PubMed ID: 29367162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of copper impregnated bio-inspired hydrophobic antibacterial nanocoatings for textiles.
    Prabhakar P; Sen RK; Patel M; Shruti ; Dwivedi N; Singh S; Kumar P; Chouhan M; Yadav AK; Mondal DP; Solanki PR; Srivastava AK; Dhand C
    Colloids Surf B Biointerfaces; 2022 Dec; 220():112913. PubMed ID: 36306694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modified bamboo rayon-copper nanoparticle composites as antibacterial textiles.
    Teli MD; Sheikh J
    Int J Biol Macromol; 2013 Oct; 61():302-7. PubMed ID: 23916646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibacterial, UV-Protective, Hydrophobic, Washable, and Heat-Resistant BN-Based Nanoparticle-Coated Textile Fabrics: Experimental and Theoretical Insight.
    Permyakova ES; Tregubenko MV; Antipina LY; Kovalskii AM; Matveev AT; Konopatsky AS; Manakhov AM; Slukin PV; Ignatov SG; Shtansky DV
    ACS Appl Bio Mater; 2022 Dec; 5(12):5595-5607. PubMed ID: 36479940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-Anchored Metal-Organic Framework-Cotton Material for Tunable Antibacterial Copper Delivery.
    Rubin HN; Neufeld BH; Reynolds MM
    ACS Appl Mater Interfaces; 2018 May; 10(17):15189-15199. PubMed ID: 29637764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Putting copper into action: copper-impregnated products with potent biocidal activities.
    Borkow G; Gabbay J
    FASEB J; 2004 Nov; 18(14):1728-30. PubMed ID: 15345689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitigation of SARS-CoV-2 by Using Transition Metal Nanozeolites and Quaternary Ammonium Compounds as Antiviral Agents in Suspensions and Soft Fabric Materials.
    Guerrero-Arguero I; Khan SR; Henry BM; Garcia-Vilanova A; Chiem K; Ye C; Shrestha S; Knight D; Cristner M; Hill S; Waldman WJ; Dutta PK; Torrelles JB; Martinez-Sobrido L; Nagy AM
    Int J Nanomedicine; 2023; 18():2307-2324. PubMed ID: 37163142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmentally friendly antibacterial cotton textiles finished with siloxane sulfopropylbetaine.
    Chen S; Chen S; Jiang S; Xiong M; Luo J; Tang J; Ge Z
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1154-62. PubMed ID: 21417413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parsimonious methodology for synthesis of silver and copper functionalized cellulose.
    Patch D; O'Connor N; Meira D; Scott J; Koch I; Weber K
    Cellulose (Lond); 2023; 30(6):3455-3472. PubMed ID: 36994235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging nanomaterials for antibacterial textile fabrication.
    Andra S; Balu SK; Jeevanandam J; Muthalagu M
    Naunyn Schmiedebergs Arch Pharmacol; 2021 Jul; 394(7):1355-1382. PubMed ID: 33710422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cotton textiles modified with citric acid as efficient anti-bacterial agent for prevention of nosocomial infections.
    Bischof Vukušić S; Flinčec Grgac S; Budimir A; Kalenić S
    Croat Med J; 2011 Feb; 52(1):68-75. PubMed ID: 21328723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of methods for determining the effectiveness of antibacterial functionalized textiles.
    Haase H; Jordan L; Keitel L; Keil C; Mahltig B
    PLoS One; 2017; 12(11):e0188304. PubMed ID: 29161306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chitosan-coated cotton cloth supported copper nanoparticles for toxic dye reduction.
    Ali N; Awais ; Kamal T; Ul-Islam M; Khan A; Shah SJ; Zada A
    Int J Biol Macromol; 2018 May; 111():832-838. PubMed ID: 29355628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.