These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36585560)

  • 1. A novel catheter interaction simulating method for virtual reality interventional training systems.
    Shi P; Guo S; Jin X; Hirata H; Tamiya T; Kawanishi M
    Med Biol Eng Comput; 2023 Mar; 61(3):685-697. PubMed ID: 36585560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and evaluation of safety operation VR training system for robotic catheter surgery.
    Wang Y; Guo S; Li Y; Tamiya T; Song Y
    Med Biol Eng Comput; 2018 Jan; 56(1):25-35. PubMed ID: 28667589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and development of a personalized virtual reality-based training system for vascular intervention surgery.
    Li P; Xu B; Zhang X; Fang D; Zhang J
    Comput Methods Programs Biomed; 2024 Jun; 249():108142. PubMed ID: 38547688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Magnetorheological Fluids-Based Robot-Assisted Catheter/Guidewire Surgery System for Endovascular Catheterization.
    Zhang L; Gu S; Guo S; Tamiya T
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34070909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and performance evaluation of collision protection-based safety operation for a haptic robot-assisted catheter operating system.
    Zhang L; Guo S; Yu H; Song Y; Tamiya T; Hirata H; Ishihara H
    Biomed Microdevices; 2018 Feb; 20(2):22. PubMed ID: 29476379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Methods for training of robot-assisted radical prostatectomy].
    Rapoport LM; Bezrukov EA; Tsarichenko DG; Martirosyan GA; Sukhanov RB; Krupinov GE; Slusarenco RI; Morozov AO; Avakyan SK; Sargsyan NA
    Khirurgiia (Mosk); 2019; (1):89-94. PubMed ID: 30789615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel virtual reality based training system for fine motor skills: Towards developing a robotic surgery training system.
    Vasudevan MK; Isaac JHR; Sadanand V; Muniyandi M
    Int J Med Robot; 2020 Dec; 16(6):1-14. PubMed ID: 32976695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A robust and real-time vascular intervention simulation based on Kirchhoff elastic rod.
    Luo M; Xie H; Xie L; Cai P; Gu L
    Comput Med Imaging Graph; 2014 Dec; 38(8):735-43. PubMed ID: 25223506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on Collision Detection and Force Feedback Algorithm in Virtual Surgery.
    Zhang Y; Luo D; Li J; Li J
    J Healthc Eng; 2021; 2021():6611196. PubMed ID: 33628402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current state of virtual reality simulation in robotic surgery training: a review.
    Bric JD; Lumbard DC; Frelich MJ; Gould JC
    Surg Endosc; 2016 Jun; 30(6):2169-78. PubMed ID: 26304107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A virtual reality-based method of decreasing transmission time of visual feedback for a tele-operative robotic catheter operating system.
    Guo J; Guo S; Tamiya T; Hirata H; Ishihara H
    Int J Med Robot; 2016 Mar; 12(1):32-45. PubMed ID: 25693866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparison of Robotic Simulation Performance on Basic Virtual Reality Skills: Simulator Subjective Versus Objective Assessment Tools.
    Dubin AK; Smith R; Julian D; Tanaka A; Mattingly P
    J Minim Invasive Gynecol; 2017; 24(7):1184-1189. PubMed ID: 28757439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving Robotic Skills by Video Review.
    van der Leun JA; Siem G; Meijer RP; Brinkman WM
    J Endourol; 2022 Aug; 36(8):1126-1135. PubMed ID: 35262417
    [No Abstract]   [Full Text] [Related]  

  • 14. A virtual-reality simulator and force sensation combined catheter operation training system and its preliminary evaluation.
    Wang Y; Guo S; Tamiya T; Hirata H; Ishihara H; Yin X
    Int J Med Robot; 2017 Sep; 13(3):. PubMed ID: 27538939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual reality simulation in robot-assisted surgery: meta-analysis of skill transfer and predictability of skill.
    Schmidt MW; Köppinger KF; Fan C; Kowalewski KF; Schmidt LP; Vey J; Proctor T; Probst P; Bintintan VV; Müller-Stich BP; Nickel F
    BJS Open; 2021 Mar; 5(2):. PubMed ID: 33864069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Performance Evaluation of Real-time Endovascular Interventional Surgical Robotic System with High Accuracy.
    Wang K; Chen B; Lu Q; Li H; Liu M; Shen Y; Xu Z
    Int J Med Robot; 2018 Oct; 14(5):e1915. PubMed ID: 29761842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can a virtual reality surgical simulation training provide a self-driven and mentor-free skills learning? Investigation of the practical influence of the performance metrics from the virtual reality robotic surgery simulator on the skill learning and associated cognitive workloads.
    Lee GI; Lee MR
    Surg Endosc; 2018 Jan; 32(1):62-72. PubMed ID: 28634632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A tensor-mass method-based vascular model and its performance evaluation for interventional surgery virtual reality simulator.
    Guo S; Cai X; Gao B
    Int J Med Robot; 2018 Dec; 14(6):e1946. PubMed ID: 30155973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robotic Surgery: The Impact of Simulation and Other Innovative Platforms on Performance and Training.
    Azadi S; Green IC; Arnold A; Truong M; Potts J; Martino MA
    J Minim Invasive Gynecol; 2021 Mar; 28(3):490-495. PubMed ID: 33310145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An assembly-type master-slave catheter and guidewire driving system for vascular intervention.
    Cha HJ; Yi BJ; Won JY
    Proc Inst Mech Eng H; 2017 Jan; 231(1):69-79. PubMed ID: 28097937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.