These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36585849)

  • 1. Multifunctional 3D-Printed Pollen Grain-Inspired Hydrogel Microrobots for On-Demand Anchoring and Cargo Delivery.
    Lee YW; Kim JK; Bozuyuk U; Dogan NO; Khan MTA; Shiva A; Wild AM; Sitti M
    Adv Mater; 2023 Mar; 35(10):e2209812. PubMed ID: 36585849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Microprinting of Iron Platinum Nanoparticle-Based Magnetic Mobile Microrobots.
    Giltinan J; Sridhar V; Bozuyuk U; Sheehan D; Sitti M
    Adv Intell Syst; 2021 Jan; 3(1):2000204. PubMed ID: 33786452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preliminary study on alginate/NIPAM hydrogel-based soft microrobot for controlled drug delivery using electromagnetic actuation and near-infrared stimulus.
    Lee H; Choi H; Lee M; Park S
    Biomed Microdevices; 2018 Nov; 20(4):103. PubMed ID: 30535774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Multidrug Delivery Microrobot for the Synergistic Treatment of Cancer.
    Li Y; Dong D; Qu Y; Li J; Chen S; Zhao H; Zhang Q; Jiao Y; Fan L; Sun D
    Small; 2023 Nov; 19(44):e2301889. PubMed ID: 37423966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-Printed Multi-Stimuli-Responsive Mobile Micromachines.
    Lee YW; Ceylan H; Yasa IC; Kilic U; Sitti M
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12759-12766. PubMed ID: 33378156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printed swelling-driven shape-morphing pH-responsive hydrogel gripper.
    Park H; Lee Y; Kim J; Sim JY; Na Y; Yoon C
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly tunable bioadhesion and optics of 3D printable PNIPAm/cellulose nanofibrils hydrogels.
    Sun X; Tyagi P; Agate S; McCord MG; Lucia LA; Pal L
    Carbohydr Polym; 2020 Apr; 234():115898. PubMed ID: 32070518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Versatile magnetic hydrogel soft capsule microrobots for targeted delivery.
    Xu Z; Wu Z; Yuan M; Chen Y; Ge W; Xu Q
    iScience; 2023 May; 26(5):106727. PubMed ID: 37216105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-printed PNAGA thermosensitive hydrogelbased microrobots: An effective cancer therapy by temperature-triggered drug release.
    Zhou Y; Ye M; Zhao H; Wang X
    Int J Bioprint; 2023; 9(3):709. PubMed ID: 37274004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-Printed Biodegradable Microswimmer for Theranostic Cargo Delivery and Release.
    Ceylan H; Yasa IC; Yasa O; Tabak AF; Giltinan J; Sitti M
    ACS Nano; 2019 Mar; 13(3):3353-3362. PubMed ID: 30742410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zwitterionic 3D-Printed Non-Immunogenic Stealth Microrobots.
    Cabanach P; Pena-Francesch A; Sheehan D; Bozuyuk U; Yasa O; Borros S; Sitti M
    Adv Mater; 2020 Oct; 32(42):e2003013. PubMed ID: 32864804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoresponsive hydrogel with embedded magnetic nanoparticles for the implementation of shrinkable medical microrobots and for targeting and drug delivery applications.
    Lapointe J; Martel S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4246-9. PubMed ID: 19963816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(N-isopropylacrylamide) beads synthesis with nanoparticles embedded for the implementation of shrinkable medical microrobots for biomedical applications.
    Lapointe J; Martel S
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3800-3. PubMed ID: 21097054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications.
    Kahn JS; Hu Y; Willner I
    Acc Chem Res; 2017 Apr; 50(4):680-690. PubMed ID: 28248486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Temperature-Dependent Hydrogel Emulsion with Sol/Gel Reversible Phase Transition Behavior Based on Polystyrene-co-poly(N-isopropylacrylamide)/Poly(N-isopropylacrylamide) Core-Shell Nanoparticle.
    Jiang Y; Yan R; Pang B; Mi J; Zhang Y; Liu H; Xin J; Zhang Y; Li N; Zhao Y; Lin Q
    Macromol Rapid Commun; 2021 Jan; 42(2):e2000507. PubMed ID: 33210416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A one-step hydrothermal route to programmable stimuli-responsive hydrogels.
    Luo R; Chen CH
    Chem Commun (Camb); 2015 Apr; 51(30):6617-20. PubMed ID: 25780804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ integrated microrobots driven by artificial muscles built from biomolecular motors.
    Wang Y; Nitta T; Hiratsuka Y; Morishima K
    Sci Robot; 2022 Aug; 7(69):eaba8212. PubMed ID: 36001686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Fabrication of Fully Iron Magnetic Microrobots.
    Alcântara CCJ; Kim S; Lee S; Jang B; Thakolkaran P; Kim JY; Choi H; Nelson BJ; Pané S
    Small; 2019 Apr; 15(16):e1805006. PubMed ID: 30829003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Jammed Microgel-Based Inks for 3D Printing of Complex Structures Transformable via pH/Temperature Variations.
    Moon D; Lee MG; Sun JY; Song KH; Doh J
    Macromol Rapid Commun; 2022 Oct; 43(19):e2200271. PubMed ID: 35686322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
    Jiao D; Zhu QL; Li CY; Zheng Q; Wu ZL
    Acc Chem Res; 2022 Jun; 55(11):1533-1545. PubMed ID: 35413187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.