These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 36586396)

  • 1. Accelerating wood domestication in forest trees through genome editing: Advances and prospects.
    Anders C; Hoengenaert L; Boerjan W
    Curr Opin Plant Biol; 2023 Feb; 71():102329. PubMed ID: 36586396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Achievements and Challenges of Genomics-Assisted Breeding in Forest Trees: From Marker-Assisted Selection to Genome Editing.
    Ahmar S; Ballesta P; Ali M; Mora-Poblete F
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Genome Sequencing to CRISPR-Based Genome Editing for Climate-Resilient Forest Trees.
    Cao HX; Vu GTH; Gailing O
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering traits through CRISPR/cas genome editing in woody species to improve forest diversity and yield.
    Thapliyal G; Bhandari MS; Vemanna RS; Pandey S; Meena RK; Barthwal S
    Crit Rev Biotechnol; 2023 Sep; 43(6):884-903. PubMed ID: 35968912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Based Genome Editing and Its Applications in Woody Plants.
    Min T; Hwarari D; Li D; Movahedi A; Yang L
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerating the domestication of forest trees in a changing world.
    Harfouche A; Meilan R; Kirst M; Morgante M; Boerjan W; Sabatti M; Scarascia Mugnozza G
    Trends Plant Sci; 2012 Feb; 17(2):64-72. PubMed ID: 22209522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant genome engineering from lab to field-a Keystone Symposia report.
    Cable J; Ronald PC; Voytas D; Zhang F; Levy AA; Takatsuka A; Arimura SI; Jacobsen SE; Toki S; Toda E; Gao C; Zhu JK; Boch J; Van Eck J; Mahfouz M; Andersson M; Fridman E; Weiss T; Wang K; Qi Y; Jores T; Adams T; Bagchi R
    Ann N Y Acad Sci; 2021 Dec; 1506(1):35-54. PubMed ID: 34435370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced domestication: harnessing the precision of gene editing in crop breeding.
    Lyzenga WJ; Pozniak CJ; Kagale S
    Plant Biotechnol J; 2021 Apr; 19(4):660-670. PubMed ID: 33657682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-Wide SNP Markers Accelerate Perennial Forest Tree Breeding Rate for Disease Resistance through Marker-Assisted and Genome-Wide Selection.
    Younessi-Hamzekhanlu M; Gailing O
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture.
    Chen K; Wang Y; Zhang R; Zhang H; Gao C
    Annu Rev Plant Biol; 2019 Apr; 70():667-697. PubMed ID: 30835493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas mediated genome editing in potato: Past achievements and future directions.
    Tuncel A; Qi Y
    Plant Sci; 2022 Dec; 325():111474. PubMed ID: 36174801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of new breeding techniques in fruit trees.
    Campa M; Miranda S; Licciardello C; Lashbrooke JG; Dalla Costa L; Guan Q; Spök A; Malnoy M
    Plant Physiol; 2024 Feb; 194(3):1304-1322. PubMed ID: 37394947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. State-of-the-Art in CRISPR Technology and Engineering Drought, Salinity, and Thermo-tolerant crop plants.
    Chennakesavulu K; Singh H; Trivedi PK; Jain M; Yadav SR
    Plant Cell Rep; 2022 Mar; 41(3):815-831. PubMed ID: 33742256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees.
    Resende MDV; Resende MFR; Sansaloni CP; Petroli CD; Missiaggia AA; Aguiar AM; Abad JM; Takahashi EK; Rosado AM; Faria DA; Pappas GJ; Kilian A; Grattapaglia D
    New Phytol; 2012 Apr; 194(1):116-128. PubMed ID: 22309312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas systems: opportunities and challenges for crop breeding.
    Biswas S; Zhang D; Shi J
    Plant Cell Rep; 2021 Jun; 40(6):979-998. PubMed ID: 33977326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wood of trees: Cellular structure, molecular formation, and genetic engineering.
    Zhu Y; Li L
    J Integr Plant Biol; 2024 Mar; 66(3):443-467. PubMed ID: 38032010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome Editing-accelerated Re-Domestication (GEaReD) - A new major direction in plant breeding.
    Hanak T; Madsen CK; Brinch-Pedersen H
    Biotechnol J; 2022 Jul; 17(7):e2100545. PubMed ID: 35120401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances and challenges in potato improvement using CRISPR/Cas genome editing.
    Chincinska IA; Miklaszewska M; Sołtys-Kalina D
    Planta; 2022 Dec; 257(1):25. PubMed ID: 36562862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current and future editing reagent delivery systems for plant genome editing.
    Ran Y; Liang Z; Gao C
    Sci China Life Sci; 2017 May; 60(5):490-505. PubMed ID: 28527114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perspectives on the Application of Genome-Editing Technologies in Crop Breeding.
    Hua K; Zhang J; Botella JR; Ma C; Kong F; Liu B; Zhu JK
    Mol Plant; 2019 Aug; 12(8):1047-1059. PubMed ID: 31260812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.