These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 36586396)

  • 21. Genome editing and beyond: what does it mean for the future of plant breeding?
    Van Vu T; Das S; Hensel G; Kim JY
    Planta; 2022 May; 255(6):130. PubMed ID: 35587292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox.
    Razzaq A; Saleem F; Kanwal M; Mustafa G; Yousaf S; Imran Arshad HM; Hameed MK; Khan MS; Joyia FA
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31430902
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advancing organelle genome transformation and editing for crop improvement.
    Li S; Chang L; Zhang J
    Plant Commun; 2021 Mar; 2(2):100141. PubMed ID: 33898977
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeted modification of plant genomes for precision crop breeding.
    Hilscher J; Bürstmayr H; Stoger E
    Biotechnol J; 2017 Jan; 12(1):. PubMed ID: 27726285
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biologia Futura: progress and future perspectives of long non-coding RNAs in forest trees.
    Patturaj M; Munusamy A; Kannan N; Ramasamy Y
    Biol Futur; 2022 Mar; 73(1):43-53. PubMed ID: 34843103
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrating genomics and genome editing for orphan crop improvement: a bridge between orphan crops and modern agriculture system.
    Yaqoob H; Tariq A; Bhat BA; Bhat KA; Nehvi IB; Raza A; Djalovic I; Prasad PV; Mir RA
    GM Crops Food; 2023 Dec; 14(1):1-20. PubMed ID: 36606637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling transcriptional networks regulating secondary growth and wood formation in forest trees.
    Liu L; Filkov V; Groover A
    Physiol Plant; 2014 Jun; 151(2):156-63. PubMed ID: 24117954
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of Genome Editing in Tomato Breeding: Mechanisms, Advances, and Prospects.
    Salava H; Thula S; Mohan V; Kumar R; Maghuly F
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33445555
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome Editing and Designer Crops for the Future.
    Rana S; Aggarwal PR; Shukla V; Giri U; Verma S; Muthamilarasan M
    Methods Mol Biol; 2022; 2408():37-69. PubMed ID: 35325415
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives.
    Shelake RM; Kadam US; Kumar R; Pramanik D; Singh AK; Kim JY
    Plant Commun; 2022 Nov; 3(6):100417. PubMed ID: 35927945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent advancements in CRISPR/Cas technology for accelerated crop improvement.
    Das D; Singha DL; Paswan RR; Chowdhury N; Sharma M; Reddy PS; Chikkaputtaiah C
    Planta; 2022 Apr; 255(5):109. PubMed ID: 35460444
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR-mediated accelerated domestication of African rice landraces.
    Lacchini E; Kiegle E; Castellani M; Adam H; Jouannic S; Gregis V; Kater MM
    PLoS One; 2020; 15(3):e0229782. PubMed ID: 32126126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fast-forward breeding for a food-secure world.
    Varshney RK; Bohra A; Roorkiwal M; Barmukh R; Cowling WA; Chitikineni A; Lam HM; Hickey LT; Croser JS; Bayer PE; Edwards D; Crossa J; Weckwerth W; Millar H; Kumar A; Bevan MW; Siddique KHM
    Trends Genet; 2021 Dec; 37(12):1124-1136. PubMed ID: 34531040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Induced Genetic Variations in Fruit Trees Using New Breeding Tools: Food Security and Climate Resilience.
    Sattar MN; Iqbal Z; Al-Khayri JM; Jain SM
    Plants (Basel); 2021 Jul; 10(7):. PubMed ID: 34371550
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of clonal testing on the efficiency of genomic evaluation in forest tree breeding.
    Stejskal J; Klápště J; Čepl J; El-Kassaby YA; Lstibůrek M
    Sci Rep; 2022 Feb; 12(1):3033. PubMed ID: 35194102
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advances in genomics and genome editing for breeding next generation of fruit and nut crops.
    Savadi S; Mangalassery S; Sandesh MS
    Genomics; 2021 Nov; 113(6):3718-3734. PubMed ID: 34517092
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genomics, domestication, and evolution of forest trees.
    Sederoff R; Myburg A; Kirst M
    Cold Spring Harb Symp Quant Biol; 2009; 74():303-17. PubMed ID: 20375318
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome editing for plant disease resistance: applications and perspectives.
    Yin K; Qiu JL
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1767):20180322. PubMed ID: 30967029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Towards CRISPR/Cas crops - bringing together genomics and genome editing.
    Scheben A; Wolter F; Batley J; Puchta H; Edwards D
    New Phytol; 2017 Nov; 216(3):682-698. PubMed ID: 28762506
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Go green with plant organelle genome editing.
    Lee H; Hong C; Hwang J; Seo PJ
    Mol Plant; 2021 Sep; 14(9):1415-1417. PubMed ID: 34284170
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.