These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36586542)

  • 21. DF-QSM: Data Fidelity based Hybrid Approach for Improved Quantitative Susceptibility Mapping of the Brain.
    Paluru N; Susan Mathew R; Yalavarthy PK
    NMR Biomed; 2024 Sep; 37(9):e5163. PubMed ID: 38649140
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overview of quantitative susceptibility mapping using deep learning: Current status, challenges and opportunities.
    Jung W; Bollmann S; Lee J
    NMR Biomed; 2022 Apr; 35(4):e4292. PubMed ID: 32207195
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast quantitative susceptibility mapping using 3D EPI and total generalized variation.
    Langkammer C; Bredies K; Poser BA; Barth M; Reishofer G; Fan AP; Bilgic B; Fazekas F; Mainero C; Ropele S
    Neuroimage; 2015 May; 111():622-30. PubMed ID: 25731991
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BFRnet: A deep learning-based MR background field removal method for QSM of the brain containing significant pathological susceptibility sources.
    Zhu X; Gao Y; Liu F; Crozier S; Sun H
    Z Med Phys; 2023 Nov; 33(4):578-590. PubMed ID: 36064695
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Noise Effects in Various Quantitative Susceptibility Mapping Methods.
    Wang S; Liu T; Chen W; Spincemaille P; Wisnieff C; Tsiouris AJ; Zhu W; Pan C; Zhao L; Wang Y
    IEEE Trans Biomed Eng; 2013 Dec; 60(12):3441-8. PubMed ID: 23751950
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative Susceptibility Mapping (QSM) Algorithms: Mathematical Rationale and Computational Implementations.
    Kee Y; Liu Z; Zhou L; Dimov A; Cho J; de Rochefort L; Seo JK; Wang Y
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2531-2545. PubMed ID: 28885147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Weak-harmonic regularization for quantitative susceptibility mapping.
    Milovic C; Bilgic B; Zhao B; Langkammer C; Tejos C; Acosta-Cabronero J
    Magn Reson Med; 2019 Feb; 81(2):1399-1411. PubMed ID: 30265767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigating the effect of oblique image acquisition on the accuracy of QSM and a robust tilt correction method.
    Kiersnowski OC; Karsa A; Wastling SJ; Thornton JS; Shmueli K
    Magn Reson Med; 2023 May; 89(5):1791-1808. PubMed ID: 36480002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tilted quantitative susceptibility mapping at oblique MRI (tiltQSM).
    Chen Z; Zhai X; Chen Z
    Comput Biol Med; 2023 May; 157():106802. PubMed ID: 36965324
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Correction of magnetic field inhomogeneity effects for fast quantitative susceptibility mapping.
    Ngo GC; Bilgic B; Gagoski BA; Sutton BP
    Magn Reson Med; 2019 Mar; 81(3):1645-1658. PubMed ID: 30387905
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A preliminary attempt to visualize nigrosome 1 in the substantia nigra for Parkinson's disease at 3T: An efficient susceptibility map-weighted imaging (SMWI) with quantitative susceptibility mapping using deep neural network (QSMnet).
    Jo M; Oh SH
    Med Phys; 2020 Mar; 47(3):1151-1160. PubMed ID: 31883389
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-echo dipole inversion for magnetic susceptibility mapping.
    Kames C; Doucette J; Rauscher A
    Magn Reson Med; 2023 Jun; 89(6):2391-2401. PubMed ID: 36695283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [A multi-channel input convolutional neural network for artifact reduction in quantitative susceptibility mapping].
    Si W; Feng Y
    Nan Fang Yi Ke Da Xue Xue Bao; 2022 Dec; 42(12):1799-1806. PubMed ID: 36651247
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping.
    Bollmann S; Rasmussen KGB; Kristensen M; Blendal RG; Østergaard LR; Plocharski M; O'Brien K; Langkammer C; Janke A; Barth M
    Neuroimage; 2019 Jul; 195():373-383. PubMed ID: 30935908
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Blip up-down acquisition for spin- and gradient-echo imaging (BUDA-SAGE) with self-supervised denoising enables efficient T
    Zhang Z; Cho J; Wang L; Liao C; Shin HG; Cao X; Lee J; Xu J; Zhang T; Ye H; Setsompop K; Liu H; Bilgic B
    Magn Reson Med; 2022 Aug; 88(2):633-650. PubMed ID: 35436357
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chaos and COSMOS-Considerations on QSM methods with multiple and single orientations and effects from local anisotropy.
    Gkotsoulias DG; Jäger C; Müller R; Gräßle T; Olofsson KM; Møller T; Unwin S; Crockford C; Wittig RM; Bilgic B; Möller HE
    Magn Reson Imaging; 2024 Jul; 110():104-111. PubMed ID: 38631534
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coherence enhancement in quantitative susceptibility mapping by means of anisotropic weighting in morphology enabled dipole inversion.
    Kee Y; Cho J; Deh K; Liu Z; Spincemaille P; Wang Y
    Magn Reson Med; 2018 Feb; 79(2):1172-1180. PubMed ID: 28556244
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring linearity of deep neural network trained QSM: QSMnet
    Jung W; Yoon J; Ji S; Choi JY; Kim JM; Nam Y; Kim EY; Lee J
    Neuroimage; 2020 May; 211():116619. PubMed ID: 32044437
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep learning-regularized, single-step quantitative susceptibility mapping quantification.
    Wang Z; Mak HK; Cao P
    NMR Biomed; 2023 Mar; 36(3):e4849. PubMed ID: 36259729
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Harmonic field extension for QSM with reduced spatial coverage using physics-informed generative adversarial network.
    Jung S; Jeon S; Gho SM; Lee HJ; Jung KJ; Kim DH
    Neuroimage; 2024 Mar; 288():120528. PubMed ID: 38311125
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.