BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 36586543)

  • 1. A machine learning based approach towards high-dimensional mediation analysis.
    Nath T; Caffo B; Wager T; Lindquist MA
    Neuroimage; 2023 Mar; 268():119843. PubMed ID: 36586543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features.
    Cui Z; Gong G
    Neuroimage; 2018 Sep; 178():622-637. PubMed ID: 29870817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resting state dynamics meets anatomical structure: Temporal multiple kernel learning (tMKL) model.
    Surampudi SG; Misra J; Deco G; Bapi RS; Sharma A; Roy D
    Neuroimage; 2019 Jan; 184():609-620. PubMed ID: 30267857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NBS-Predict: A prediction-based extension of the network-based statistic.
    Serin E; Zalesky A; Matory A; Walter H; Kruschwitz JD
    Neuroimage; 2021 Dec; 244():118625. PubMed ID: 34610435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting individual traits from unperformed tasks.
    Gal S; Tik N; Bernstein-Eliav M; Tavor I
    Neuroimage; 2022 Apr; 249():118920. PubMed ID: 35051583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics.
    He T; Kong R; Holmes AJ; Nguyen M; Sabuncu MR; Eickhoff SB; Bzdok D; Feng J; Yeo BTT
    Neuroimage; 2020 Feb; 206():116276. PubMed ID: 31610298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatio-temporal modeling of connectome-scale brain network interactions via time-evolving graphs.
    Yuan J; Li X; Zhang J; Luo L; Dong Q; Lv J; Zhao Y; Jiang X; Zhang S; Zhang W; Liu T
    Neuroimage; 2018 Oct; 180(Pt B):350-369. PubMed ID: 29102809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-dimensional multivariate mediation with application to neuroimaging data.
    Chén OY; Crainiceanu C; Ogburn EL; Caffo BS; Wager TD; Lindquist MA
    Biostatistics; 2018 Apr; 19(2):121-136. PubMed ID: 28637279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Act natural: Functional connectivity from naturalistic stimuli fMRI outperforms resting-state in predicting brain activity.
    Gal S; Coldham Y; Tik N; Bernstein-Eliav M; Tavor I
    Neuroimage; 2022 Sep; 258():119359. PubMed ID: 35680054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear manifold learning in functional magnetic resonance imaging uncovers a low-dimensional space of brain dynamics.
    Gao S; Mishne G; Scheinost D
    Hum Brain Mapp; 2021 Oct; 42(14):4510-4524. PubMed ID: 34184812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting individual brain functional connectivity using a Bayesian hierarchical model.
    Dai T; Guo Y;
    Neuroimage; 2017 Feb; 147():772-787. PubMed ID: 27915121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. rest2vec: Vectorizing the resting-state functional connectome using graph embedding.
    Morrissey ZD; Zhan L; Ajilore O; Leow AD
    Neuroimage; 2021 Feb; 226():117538. PubMed ID: 33188880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regression-based machine-learning approaches to predict task activation using resting-state fMRI.
    Cohen AD; Chen Z; Parker Jones O; Niu C; Wang Y
    Hum Brain Mapp; 2020 Feb; 41(3):815-826. PubMed ID: 31638304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel machine learning approaches for improving the reproducibility and reliability of functional and effective connectivity from functional MRI.
    Mellema CJ; Montillo AA
    J Neural Eng; 2023 Dec; 20(6):. PubMed ID: 37963396
    [No Abstract]   [Full Text] [Related]  

  • 15. A deep learning based approach identifies regions more relevant than resting-state networks to the prediction of general intelligence from resting-state fMRI.
    Hebling Vieira B; Dubois J; Calhoun VD; Garrido Salmon CE
    Hum Brain Mapp; 2021 Dec; 42(18):5873-5887. PubMed ID: 34587333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Task modulations and clinical manifestations in the brain functional connectome in 1615 fMRI datasets.
    Kaufmann T; Alnæs D; Brandt CL; Doan NT; Kauppi K; Bettella F; Lagerberg TV; Berg AO; Djurovic S; Agartz I; Melle IS; Ueland T; Andreassen OA; Westlye LT
    Neuroimage; 2017 Feb; 147():243-252. PubMed ID: 27916665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional brain networks and neuroanatomy underpinning nausea severity can predict nausea susceptibility using machine learning.
    Ruffle JK; Patel A; Giampietro V; Howard MA; Sanger GJ; Andrews PLR; Williams SCR; Aziz Q; Farmer AD
    J Physiol; 2019 Mar; 597(6):1517-1529. PubMed ID: 30629751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Connectome-based predictive modeling of attention: Comparing different functional connectivity features and prediction methods across datasets.
    Yoo K; Rosenberg MD; Hsu WT; Zhang S; Li CR; Scheinost D; Constable RT; Chun MM
    Neuroimage; 2018 Feb; 167():11-22. PubMed ID: 29122720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning may predict individual hand motor activation from resting-state fMRI in patients with brain tumors in perirolandic cortex.
    Niu C; Wang Y; Cohen AD; Liu X; Li H; Lin P; Chen Z; Min Z; Li W; Ling X; Wen X; Wang M; Thompson HP; Zhang M
    Eur Radiol; 2021 Jul; 31(7):5253-5262. PubMed ID: 33758954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.