These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 36586657)
1. Green synthesis of reduced graphene oxide/chitosan/gold nanoparticles composites and their catalytic activity for reduction of 4-nitrophenol. Ren Z; Li H; Li J; Cai J; Zhong L; Ma Y; Pang Y Int J Biol Macromol; 2023 Feb; 229():732-745. PubMed ID: 36586657 [TBL] [Abstract][Full Text] [Related]
2. An in vitro comparison of the antioxidant activities of chitosan and green synthesized gold nanoparticles. Pu S; Li J; Sun L; Zhong L; Ma Q Carbohydr Polym; 2019 May; 211():161-172. PubMed ID: 30824076 [TBL] [Abstract][Full Text] [Related]
3. One pot synthesis of gold nanoparticles using chitosan with varying degree of deacetylation and molecular weight. Sun L; Li J; Cai J; Zhong L; Ren G; Ma Q Carbohydr Polym; 2017 Dec; 178():105-114. PubMed ID: 29050575 [TBL] [Abstract][Full Text] [Related]
4. Amine-functionalized reduced graphene oxide-supported silver nanoparticles for superior catalytic reduction of organic pollutants. C V; Kp M; Damodaran SP Environ Sci Pollut Res Int; 2023 Sep; 30(42):96114-96124. PubMed ID: 37566329 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of AuNPs@RGO nanosheets for sustainable catalysis toward nitrophenols reduction. Vellaichamy B; Prakash P; Thomas J Ultrason Sonochem; 2018 Nov; 48():362-369. PubMed ID: 30080561 [TBL] [Abstract][Full Text] [Related]
6. Effect of Graphene vs. Reduced Graphene Oxide in Gold Nanoparticles for Optical Biosensors-A Comparative Study. Carvalho APG; Alegria ECBA; Fantoni A; Ferraria AM; do Rego AMB; Ribeiro APC Biosensors (Basel); 2022 Mar; 12(3):. PubMed ID: 35323433 [TBL] [Abstract][Full Text] [Related]
7. Size controllable one step synthesis of gold nanoparticles using carboxymethyl chitosan. Sun L; Pu S; Li J; Cai J; Zhou B; Ren G; Ma Q; Zhong L Int J Biol Macromol; 2019 Feb; 122():770-783. PubMed ID: 30399380 [TBL] [Abstract][Full Text] [Related]
8. Green synthesis of gold nanoparticles using fungus Mariannaea sp. HJ and their catalysis in reduction of 4-nitrophenol. Pei X; Qu Y; Shen W; Li H; Zhang X; Li S; Zhang Z; Li X Environ Sci Pollut Res Int; 2017 Sep; 24(27):21649-21659. PubMed ID: 28752308 [TBL] [Abstract][Full Text] [Related]
9. Novel biogenic gold nanoparticles stabilized on poly(styrene-co-maleic anhydride) as an effective material for reduction of nitrophenols and colorimetric detection of Pb(II). Nguyen THA; Le TTV; Huynh BA; Nguyen NV; Le VT; Doan VD; Tran VA; Nguyen AT; Cao XT; Vasseghian Y Environ Res; 2022 Sep; 212(Pt B):113281. PubMed ID: 35461847 [TBL] [Abstract][Full Text] [Related]
10. Bacterial Cellulose Supported Gold Nanoparticles with Excellent Catalytic Properties. Chen M; Kang H; Gong Y; Guo J; Zhang H; Liu R ACS Appl Mater Interfaces; 2015 Oct; 7(39):21717-26. PubMed ID: 26357993 [TBL] [Abstract][Full Text] [Related]
11. Preliminary investigation of catalytic, antioxidant, anticancer and bactericidal activity of green synthesized silver and gold nanoparticles using Actinidia deliciosa. Naraginti S; Li Y J Photochem Photobiol B; 2017 May; 170():225-234. PubMed ID: 28454046 [TBL] [Abstract][Full Text] [Related]
12. Β-cyclodextrin polymer as a linker to fabricate ternary nanocomposites AuNPs/pATP-β-CDP/rGO and their electrochemical application. Chen M; Shen X; Liu P; Wei Y; Meng Y; Zheng G; Diao G Carbohydr Polym; 2015 Mar; 119():26-34. PubMed ID: 25563941 [TBL] [Abstract][Full Text] [Related]
13. Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp. WL-Au. Shen W; Qu Y; Pei X; Li S; You S; Wang J; Zhang Z; Zhou J J Hazard Mater; 2017 Jan; 321():299-306. PubMed ID: 27637096 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of Au nanoparticles decorated graphene oxide nanosheets: noncovalent functionalization by TWEEN 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol. Lu W; Ning R; Qin X; Zhang Y; Chang G; Liu S; Luo Y; Sun X J Hazard Mater; 2011 Dec; 197():320-6. PubMed ID: 22019107 [TBL] [Abstract][Full Text] [Related]
15. Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis. Huang J; Zhang L; Chen B; Ji N; Chen F; Zhang Y; Zhang Z Nanoscale; 2010 Dec; 2(12):2733-8. PubMed ID: 20936236 [TBL] [Abstract][Full Text] [Related]
16. One-Pot Synthesis of Ruthenium-Based Nanocatalyst Using Reduced Graphene Oxide as Matrix for Electrochemical Synthesis of Ammonia. Sun W; Sahin NE; Sun D; Wu X; Munoz C; Thakare J; Aulich T; Zhang J; Hou X; Oncel N; Pierce D; Zhao JX ACS Appl Mater Interfaces; 2023 Jan; 15(1):1115-1128. PubMed ID: 36575897 [TBL] [Abstract][Full Text] [Related]
17. Catalytic evaluation of biocompatible chitosan-stabilized gold nanoparticles on oxidation of morin. Bulut O; Yilmaz MD Carbohydr Polym; 2021 Apr; 258():117699. PubMed ID: 33593570 [TBL] [Abstract][Full Text] [Related]
18. Green syntheses of silver nanoparticle decorated reduced graphene oxide using l-methionine as a reducing and stabilizing agent for enhanced catalytic hydrogenation of 4-nitrophenol and antibacterial activity. Belachew N; Meshesha DS; Basavaiah K RSC Adv; 2019 Nov; 9(67):39264-39271. PubMed ID: 35540644 [TBL] [Abstract][Full Text] [Related]
19. Size, composition, and surface capping-dependent catalytic activity of spherical gold nanoparticles. Yuan X; Ge L; Zhou H; Tang J Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 287(Pt 2):122082. PubMed ID: 36370632 [TBL] [Abstract][Full Text] [Related]
20. Preparation and application of thionin-bridged graphene-gold nanoparticle nanohybrids. Zhu Z; Ma L; Su M; Liu D; Wang Z J Mater Chem B; 2013 Mar; 1(10):1432-1438. PubMed ID: 32260783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]