These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36586686)

  • 1. A comparative cradle-to-gate life cycle assessment of geopolymer concrete produced from industrial side streams in comparison with traditional concrete.
    Munir Q; Abdulkareem M; Horttanainen M; Kärki T
    Sci Total Environ; 2023 Mar; 865():161230. PubMed ID: 36586686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing concrete for circularity: a comparative life cycle assessment of geopolymer and ordinary concrete.
    Bamshad O; Ramezanianpour AM
    Environ Sci Pollut Res Int; 2024 Sep; 31(43):55788-55811. PubMed ID: 39244520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive Analysis of Geopolymer Materials: Properties, Environmental Impacts, and Applications.
    Sbahieh S; McKay G; Al-Ghamdi SG
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes.
    Ahmed HU; Mohammed AS; Mohammed AA; Faraj RH
    PLoS One; 2021; 16(6):e0253006. PubMed ID: 34125869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The potential of industrial waste: using foundry sand with fly ash and electric arc furnace slag for geopolymer brick production.
    Apithanyasai S; Supakata N; Papong S
    Heliyon; 2020 Mar; 6(3):e03697. PubMed ID: 32258504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing life cycle sustainability: A comprehensive review of concrete produced from construction waste fine fractions.
    Munir Q; Lahtela V; Kärki T; Koivula A
    J Environ Manage; 2024 Aug; 366():121734. PubMed ID: 38981256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study on environmental performance of 3D printing and conventional casting of concrete products with industrial wastes.
    Liu S; Lu B; Li H; Pan Z; Jiang J; Qian S
    Chemosphere; 2022 Jul; 298():134310. PubMed ID: 35301991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formulating Geopolymer Mortars through Construction and Demolition Waste (CDW) Recycling: A Comprehensive Case Study.
    Manzi S; Baldazzi L; Saccani A
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical Properties of a Sustainable Low-Carbon Geopolymer Concrete Using a Pumice-Derived Sodium Silicate Solution.
    Oti J; Adeleke BO; Anowie FX; Kinuthia JM; Ekwulo E
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitigation of waste rubber tire and waste wood ash by the production of rubberized low calcium waste wood ash based geopolymer concrete and influence of waste rubber fibre in setting properties and mechanical behavior.
    Arunkumar K; Muthukannan M; Suresh Kumar A; Chithambar Ganesh A
    Environ Res; 2021 Mar; 194():110661. PubMed ID: 33387536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical and Microstructural Investigation of Geopolymer Concrete Incorporating Recycled Waste Plastic Aggregate.
    Adeleke BO; Kinuthia JM; Oti J; Pirrie D; Power M
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geopolymer concrete with metakaolin for sustainability: a comprehensive review on raw material's properties, synthesis, performance, and potential application.
    Jindal BB; Alomayri T; Hasan A; Kaze CR
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):25299-25324. PubMed ID: 35000173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proposed simplified methodological approach for designing geopolymer concrete mixtures.
    Alaneme GU; Olonade KA; Esenogho E; Lawan MM
    Sci Rep; 2024 Jul; 14(1):15191. PubMed ID: 38956403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soft computing models to predict the compressive strength of GGBS/FA- geopolymer concrete.
    Ahmed HU; Mohammed AA; Mohammed A
    PLoS One; 2022; 17(5):e0265846. PubMed ID: 35613110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential for Recycling Metakaolin/Slag-Based Geopolymer Concrete of Various Strength Levels in Freeze-Thaw Conditions.
    Liu M; Liu H; Hua M; Chen C; Wang X; Guo X; Ma T
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life Cycle Assessment of Prefabricated Geopolymeric Façade Cladding Panels Made from Large Fractions of Recycled Construction and Demolition Waste.
    Kvočka D; Lešek A; Knez F; Ducman V; Panizza M; Tsoutis C; Bernardi A
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32899504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life Cycle Assessment of Completely Recyclable Concrete.
    De Schepper M; Van den Heede P; Van Driessche I; De Belie N
    Materials (Basel); 2014 Aug; 7(8):6010-6027. PubMed ID: 28788174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential utilization of waste plastic in sustainable geopolymer concrete production: A review.
    Panda S; Nanda A; Panigrahi SK
    J Environ Manage; 2024 Aug; 366():121705. PubMed ID: 38972192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical Properties of Rubberised Geopolymer Concrete.
    Hassan MK; Ibrahim MI; Shill SK; Al-Deen S
    Materials (Basel); 2024 Feb; 17(5):. PubMed ID: 38473503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian Regularized Artificial Neural Network Model to Predict Strength Characteristics of Fly-Ash and Bottom-Ash Based Geopolymer Concrete.
    Aneja S; Sharma A; Gupta R; Yoo DY
    Materials (Basel); 2021 Apr; 14(7):. PubMed ID: 33915938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.