These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36586691)

  • 1. Reactions of juvenile coral to three years of consecutive thermal stress.
    Hazraty-Kari S; Morita M; Tavakoli-Kolour P; Nakamura T; Harii S
    Sci Total Environ; 2023 Mar; 863():161227. PubMed ID: 36586691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential impact of heat stress on reef-building corals under different light conditions.
    Rosic N; Rémond C; Mello-Athayde MA
    Mar Environ Res; 2020 Jun; 158():104947. PubMed ID: 32250839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of resistant larvae of the coral Acropora tenuis to future thermal stress.
    Hazraty-Kari S; Morita M; Tavakoli-Kolour P; Harii S
    Mar Pollut Bull; 2023 Jul; 192():115060. PubMed ID: 37207392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shift of symbiont communities in
    Yorifuji M; Harii S; Nakamura R; Fudo M
    PeerJ; 2017; 5():e4055. PubMed ID: 29255647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the role of historical temperature regime and algal symbionts on the heat tolerance of coral juveniles.
    Quigley KM; Randall CJ; van Oppen MJH; Bay LK
    Biol Open; 2020 Jan; 9(1):. PubMed ID: 31915210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals.
    Silverstein RN; Cunning R; Baker AC
    Glob Chang Biol; 2015 Jan; 21(1):236-49. PubMed ID: 25099991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptations by the coral Acropora tenuis confer resilience to future thermal stress.
    Hazraty-Kari S; Tavakoli-Kolour P; Kitanobo S; Nakamura T; Morita M
    Commun Biol; 2022 Dec; 5(1):1371. PubMed ID: 36517561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing thermal stress for tropical coral reefs: 1871-2017.
    Lough JM; Anderson KD; Hughes TP
    Sci Rep; 2018 Apr; 8(1):6079. PubMed ID: 29666437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early transcriptional changes in the reef-building coral Acropora aspera in response to thermal and nutrient stress.
    Rosic N; Kaniewska P; Chan CK; Ling EY; Edwards D; Dove S; Hoegh-Guldberg O
    BMC Genomics; 2014 Dec; 15():1052. PubMed ID: 25467196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consistent responses of coral microbiome to acute and chronic heat stress exposures.
    Zhu W; Wang H; Li X; Liu X; Zhu M; Wang A; Li X
    Mar Environ Res; 2023 Mar; 185():105900. PubMed ID: 36731191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of gene expression and symbiosis in reef-building coral acquired heat tolerance.
    Strader ME; Quigley KM
    Nat Commun; 2022 Aug; 13(1):4513. PubMed ID: 35922443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acclimatization of massive reef-building corals to consecutive heatwaves.
    DeCarlo TM; Harrison HB; Gajdzik L; Alaguarda D; Rodolfo-Metalpa R; D'Olivo J; Liu G; Patalwala D; McCulloch MT
    Proc Biol Sci; 2019 Mar; 286(1898):20190235. PubMed ID: 30836872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid Acclimation Ability Mediated by Transcriptome Changes in Reef-Building Corals.
    Bay RA; Palumbi SR
    Genome Biol Evol; 2015 May; 7(6):1602-12. PubMed ID: 25979751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Standardized short-term acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites.
    Voolstra CR; Buitrago-López C; Perna G; Cárdenas A; Hume BCC; Rädecker N; Barshis DJ
    Glob Chang Biol; 2020 Aug; 26(8):4328-4343. PubMed ID: 32567206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broad scale proteomic analysis of heat-destabilised symbiosis in the hard coral Acropora millepora.
    Petrou K; Nunn BL; Padula MP; Miller DJ; Nielsen DA
    Sci Rep; 2021 Sep; 11(1):19061. PubMed ID: 34561509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The early acquisition of symbiotic algae benefits larval survival and juvenile growth in the coral Acropora tenuis.
    Hazraty-Kari S; Masaya M; Kawachi M; Harii S
    J Exp Zool A Ecol Integr Physiol; 2022 Jun; 337(5):559-565. PubMed ID: 35286770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Algal symbiont type affects gene expression in juveniles of the coral Acropora tenuis exposed to thermal stress.
    Yuyama I; Harii S; Hidaka M
    Mar Environ Res; 2012 May; 76():41-7. PubMed ID: 22001189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of coral-associated bacterial communities to heat stress differ with Symbiodinium type on the same coral host.
    Littman RA; Bourne DG; Willis BL
    Mol Ecol; 2010 May; 19(9):1978-90. PubMed ID: 20529072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress-resistant corals may not acclimatize to ocean warming but maintain heat tolerance under cooler temperatures.
    Schoepf V; Carrion SA; Pfeifer SM; Naugle M; Dugal L; Bruyn J; McCulloch MT
    Nat Commun; 2019 Sep; 10(1):4031. PubMed ID: 31530800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free-living and symbiotic lifestyles of a thermotolerant coral endosymbiont display profoundly distinct transcriptomes under both stable and heat stress conditions.
    Bellantuono AJ; Dougan KE; Granados-Cifuentes C; Rodriguez-Lanetty M
    Mol Ecol; 2019 Dec; 28(24):5265-5281. PubMed ID: 31693775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.