These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 36586876)

  • 1. Asymmetric temporal envelope sensitivity: Within- and across-ear envelope comparisons in listeners with bilateral cochlear implants.
    Anderson SR; Kan A; Litovsky RY
    J Acoust Soc Am; 2022 Dec; 152(6):3294. PubMed ID: 36586876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric temporal envelope encoding: Implications for within- and across-ear envelope comparison.
    Anderson SR; Kan A; Litovsky RY
    J Acoust Soc Am; 2019 Aug; 146(2):1189. PubMed ID: 31472559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity to interaural level and envelope time differences of two bilateral cochlear implant listeners using clinical sound processors.
    Laback B; Pok SM; Baumgartner WD; Deutsch WA; Schmid K
    Ear Hear; 2004 Oct; 25(5):488-500. PubMed ID: 15599195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmission of Binaural Cues by Bilateral Cochlear Implants: Examining the Impacts of Bilaterally Independent Spectral Peak-Picking, Pulse Timing, and Compression.
    Gray WO; Mayo PG; Goupell MJ; Brown AD
    Trends Hear; 2021; 25():23312165211030411. PubMed ID: 34293981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Timbre and speech perception in bimodal and bilateral cochlear-implant listeners.
    Kong YY; Mullangi A; Marozeau J
    Ear Hear; 2012; 33(5):645-59. PubMed ID: 22677814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Processing of speech temporal and spectral information by users of auditory brainstem implants and cochlear implants.
    Azadpour M; McKay CM
    Ear Hear; 2014; 35(5):e192-203. PubMed ID: 25010634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial hearing benefits demonstrated with presentation of acoustic temporal fine structure cues in bilateral cochlear implant listeners.
    Churchill TH; Kan A; Goupell MJ; Litovsky RY
    J Acoust Soc Am; 2014 Sep; 136(3):1246. PubMed ID: 25190398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of interaural pitch matching and auditory image centering on binaural sensitivity in cochlear implant users.
    Kan A; Litovsky RY; Goupell MJ
    Ear Hear; 2015; 36(3):e62-8. PubMed ID: 25565660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Channel Interaction and Current Level Affect Across-Electrode Integration of Interaural Time Differences in Bilateral Cochlear-Implant Listeners.
    Egger K; Majdak P; Laback B
    J Assoc Res Otolaryngol; 2016 Feb; 17(1):55-67. PubMed ID: 26377826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sound source localization patterns and bilateral cochlear implants: Age at onset of deafness effects.
    Anderson SR; Jocewicz R; Kan A; Zhu J; Tzeng S; Litovsky RY
    PLoS One; 2022; 17(2):e0263516. PubMed ID: 35134072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benefits of bilateral electrical stimulation with the nucleus cochlear implant in adults: 6-month postoperative results.
    Laszig R; Aschendorff A; Stecker M; Müller-Deile J; Maune S; Dillier N; Weber B; Hey M; Begall K; Lenarz T; Battmer RD; Böhm M; Steffens T; Strutz J; Linder T; Probst R; Allum J; Westhofen M; Doering W
    Otol Neurotol; 2004 Nov; 25(6):958-68. PubMed ID: 15547426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateralization of Interaural Level Differences with Multiple Electrode Stimulation in Bilateral Cochlear-Implant Listeners.
    Stakhovskaya OA; Goupell MJ
    Ear Hear; 2017; 38(1):e22-e38. PubMed ID: 27579987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship Between Peripheral and Psychophysical Measures of Amplitude Modulation Detection in Cochlear Implant Users.
    Tejani VD; Abbas PJ; Brown CJ
    Ear Hear; 2017; 38(5):e268-e284. PubMed ID: 28207576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perceptually aligning apical frequency regions leads to more binaural fusion of speech in a cochlear implant simulation.
    Staisloff HE; Lee DH; Aronoff JM
    Hear Res; 2016 Jul; 337():59-64. PubMed ID: 27208791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perception of stochastic envelopes by normal-hearing and cochlear-implant listeners.
    Gomersall PA; Turner RE; Baguley DM; Deeks JM; Gockel HE; Carlyon RP
    Hear Res; 2016 Mar; 333():8-24. PubMed ID: 26706708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of reducing the number of electrodes on spatial hearing tasks for bilateral cochlear implant recipients.
    Perreau A; Tyler RS; Witt SA
    J Am Acad Audiol; 2010 Feb; 21(2):110-20. PubMed ID: 20166312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Sensitivity of the Electrically Stimulated Auditory Nerve to Amplitude Modulation Cues Declines With Advanced Age.
    Riggs WJ; Vaughan C; Skidmore J; Conroy S; Pellittieri A; Carter BL; Stegman CJ; He S
    Ear Hear; 2021; 42(5):1358-1372. PubMed ID: 33795616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation frequency discrimination with single and multiple channels in cochlear implant users.
    Galvin JJ; Oba S; Başkent D; Fu QJ
    Hear Res; 2015 Jun; 324():7-18. PubMed ID: 25746914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Music Is More Enjoyable With Two Ears, Even If One of Them Receives a Degraded Signal Provided By a Cochlear Implant.
    Landsberger DM; Vermeire K; Stupak N; Lavender A; Neukam J; Van de Heyning P; Svirsky MA
    Ear Hear; 2020; 41(3):476-490. PubMed ID: 31469701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural encoding of spectro-temporal cues at slow and near speech-rate in cochlear implant users.
    Undurraga JA; Van Yper L; Bance M; McAlpine D; Vickers D
    Hear Res; 2021 Apr; 403():108160. PubMed ID: 33461048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.