These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36586989)

  • 1. Diffusion toward a nanoforest of absorbing pillars.
    Grebenkov DS; Skvortsov AT
    J Chem Phys; 2022 Dec; 157(24):244102. PubMed ID: 36586989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trapping of single diffusing particles by a circular disk on a reflecting flat surface. Absorbing hemisphere approximation.
    Dagdug L; Berezhkovskii AM; Bezrukov SM
    Phys Chem Chem Phys; 2023 Jan; 25(3):2035-2042. PubMed ID: 36546317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trapping of diffusing particles by spiky absorbers.
    Skvortsov AT; Berezhkovskii AM; Dagdug L
    J Chem Phys; 2018 Feb; 148(8):084103. PubMed ID: 29495779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steady-state reaction rate of diffusion-controlled reactions in sheets.
    Grebenkov DS; Krapf D
    J Chem Phys; 2018 Aug; 149(6):064117. PubMed ID: 30111153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trapping of diffusing particles by clusters of absorbing disks on a reflecting wall with disk centers on sites of a square lattice.
    Berezhkovskii AM; Dagdug L; Vazquez MV; Lizunov VA; Zimmerberg J; Bezrukov SM
    J Chem Phys; 2013 Feb; 138(6):064105. PubMed ID: 23425459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY; Cansoy CE
    Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trapping of diffusing particles by striped cylindrical surfaces. Boundary homogenization approach.
    Dagdug L; Berezhkovskii AM; Skvortsov AT
    J Chem Phys; 2015 Jun; 142(23):234902. PubMed ID: 26093574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trapping of diffusive particles by rough absorbing surfaces: boundary smoothing approach.
    Skvortsov A; Walker A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023202. PubMed ID: 25215838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulating the inter pillar gap in pillar array ultra-thin layer planar chromatography platforms.
    Crane NA; Lavrik NV; Sepaniak MJ
    Analyst; 2016 Feb; 141(4):1239-45. PubMed ID: 26824088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steady-state flux of diffusing particles to a rough boundary formed by absorbing spikes periodically protruding from a reflecting base.
    Skvortsov AT; Berezhkovskii AM; Dagdug L
    J Chem Phys; 2019 May; 150(19):194109. PubMed ID: 31117790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biased diffusion in three-dimensional comb-like structures.
    Berezhkovskii AM; Dagdug L; Bezrukov SM
    J Chem Phys; 2015 Apr; 142(13):134101. PubMed ID: 25854222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trapping of diffusing particles by short absorbing spikes periodically protruding from reflecting base.
    Skvortsov AT; Berezhkovskii AM; Dagdug L
    J Chem Phys; 2018 Jul; 149(4):044106. PubMed ID: 30068203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating diffusion resistance of a constriction in a membrane channel by the method of boundary homogenization.
    Skvortsov AT; Dagdug L; Berezhkovskii AM; MacGillivray IR; Bezrukov SM
    Phys Rev E; 2021 Jan; 103(1-1):012408. PubMed ID: 33601596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication, surface properties, and origin of superoleophobicity for a model textured surface.
    Zhao H; Law KY; Sambhy V
    Langmuir; 2011 May; 27(10):5927-35. PubMed ID: 21486088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superhydrophobic analyte concentration utilizing colloid-pillar array SERS substrates.
    Wallace RA; Charlton JJ; Kirchner TB; Lavrik NV; Datskos PG; Sepaniak MJ
    Anal Chem; 2014 Dec; 86(23):11819-25. PubMed ID: 25368983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructured superhydrorepellent surfaces: effect of drop pressure on fakir-state stability and apparent contact angles.
    Afferrante L; Carbone G
    J Phys Condens Matter; 2010 Aug; 22(32):325107. PubMed ID: 21386489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-area fabrication of superhydrophobic micro-conical pillar arrays on various metallic substrates.
    Pan W; Wu S; Huang L; Song J
    Nanoscale; 2021 Sep; 13(33):14023-14034. PubMed ID: 34477683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of droplet evaporation on a superhydrophobic surface.
    McHale G; Aqil S; Shirtcliffe NJ; Newton MI; Erbil HY
    Langmuir; 2005 Nov; 21(24):11053-60. PubMed ID: 16285771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution and Engineering of Precisely Controlled Ge Nanostructures on Scalable Array of Ordered Si Nano-pillars.
    Wang S; Zhou T; Li D; Zhong Z
    Sci Rep; 2016 Jun; 6():28872. PubMed ID: 27353231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertically-Aligned Multi-Walled Carbon Nano Tube Pillars with Various Diameters under Compression: Pristine and NbTiN Coated.
    Mirza Gheitaghy A; Poelma RH; Sacco L; Vollebregt S; Zhang GQ
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32570835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.