BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36587043)

  • 1. Development of a high-performance open-source 3D bioprinter.
    Tashman JW; Shiwarski DJ; Feinberg AW
    Sci Rep; 2022 Dec; 12(1):22652. PubMed ID: 36587043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high performance open-source syringe extruder optimized for extrusion and retraction during FRESH 3D bioprinting.
    Tashman JW; Shiwarski DJ; Feinberg AW
    HardwareX; 2021 Apr; 9():. PubMed ID: 34746519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of Bioprinting with a Modified Desktop 3D Printer.
    Goldstein TA; Epstein CJ; Schwartz J; Krush A; Lagalante DJ; Mercadante KP; Zeltsman D; Smith LP; Grande DA
    Tissue Eng Part C Methods; 2016 Dec; 22(12):1071-1076. PubMed ID: 27819188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accessible bioprinting: adaptation of a low-cost 3D-printer for precise cell placement and stem cell differentiation.
    Reid JA; Mollica PA; Johnson GD; Ogle RC; Bruno RD; Sachs PC
    Biofabrication; 2016 Jun; 8(2):025017. PubMed ID: 27271208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Versatile Open-Source Printhead for Low-Cost 3D Microextrusion-Based Bioprinting.
    Sanz-Garcia A; Sodupe-Ortega E; Pernía-Espinoza A; Shimizu T; Escobedo-Lucea C
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33066265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An open source extrusion bioprinter based on the E3D motion system and tool changer to enable FRESH and multimaterial bioprinting.
    Engberg A; Stelzl C; Eriksson O; O'Callaghan P; Kreuger J
    Sci Rep; 2021 Nov; 11(1):21547. PubMed ID: 34732783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting.
    Kim SH; Kim DY; Lim TH; Park CH
    Adv Exp Med Biol; 2020; 1249():53-66. PubMed ID: 32602090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inexpensive DIY Bioprinting in a Secondary School Setting.
    Sun LMP; To AC
    J Microbiol Biol Educ; 2023 Aug; 24(2):. PubMed ID: 37614896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Digital Light Processing Printing Strategy Using a Collagen-Based Bioink with Prospective Cross-Linker Procyanidins.
    Wu Z; Liu J; Lin J; Lu L; Tian J; Li L; Zhou C
    Biomacromolecules; 2022 Jan; 23(1):240-252. PubMed ID: 34931820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs.
    Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K
    Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D bioprinting and microscale organization of vascularized tissue constructs using collagen-based bioink.
    Muthusamy S; Kannan S; Lee M; Sanjairaj V; Lu WF; Fuh JYH; Sriram G; Cao T
    Biotechnol Bioeng; 2021 Aug; 118(8):3150-3163. PubMed ID: 34037982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional bioprinting of artificial organs: How close are we to its clinical application?
    Han JJ
    Artif Organs; 2023 Jun; 47(6):912-913. PubMed ID: 37114874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications.
    Markstedt K; Mantas A; Tournier I; Martínez Ávila H; Hägg D; Gatenholm P
    Biomacromolecules; 2015 May; 16(5):1489-96. PubMed ID: 25806996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Open-source hybrid 3D-bioprinter for simultaneous printing of thermoplastics and hydrogels.
    Koch F; Thaden O; Tröndle K; Zengerle R; Zimmermann S; Koltay P
    HardwareX; 2021 Oct; 10():e00230. PubMed ID: 35607684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large volume syringe pump extruder for desktop 3D printers.
    Pusch K; Hinton TJ; Feinberg AW
    HardwareX; 2018 Apr; 3():49-61. PubMed ID: 30498799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Custom Ultra-Low-Cost 3D Bioprinter Supports Cell Growth and Differentiation.
    Ioannidis K; Danalatos RI; Champeris Tsaniras S; Kaplani K; Lokka G; Kanellou A; Papachristou DJ; Bokias G; Lygerou Z; Taraviras S
    Front Bioeng Biotechnol; 2020; 8():580889. PubMed ID: 33251196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Liver Decellularized Extracellular Matrix Bioink for Three-Dimensional Cell Printing-Based Liver Tissue Engineering.
    Lee H; Han W; Kim H; Ha DH; Jang J; Kim BS; Cho DW
    Biomacromolecules; 2017 Apr; 18(4):1229-1237. PubMed ID: 28277649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Progress in application of 3D bioprinting in cartilage regeneration and reconstruction for tissue engineering].
    Liao J; Wang S; Chen J; Xie H; Zhou J
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 42(2):221-225. PubMed ID: 28255127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Application of Ultrasound in 3D Bio-Printing.
    Zhou Y
    Molecules; 2016 May; 21(5):. PubMed ID: 27164066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review.
    Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL
    J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.