BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36587043)

  • 41. A targeted rheological bioink development guideline and its systematic correlation with printing behavior.
    Pössl A; Hartzke D; Schmidts TM; Runkel FE; Schlupp P
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33472177
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bioprinting: A focus on improving bioink printability and cell performance based on different process parameters.
    Wang J; Cui Z; Maniruzzaman M
    Int J Pharm; 2023 Jun; 640():123020. PubMed ID: 37149110
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 3D-Printed Collagen Scaffolds Promote Maintenance of Cryopreserved Patients-Derived Melanoma Explants.
    Jeong YM; Bang C; Park M; Shin S; Yun S; Kim CM; Jeong G; Chung YJ; Yun WS; Lee JH; Jin S
    Cells; 2021 Mar; 10(3):. PubMed ID: 33800001
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss.
    Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W
    Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design and optimization of 3D-bioprinted scaffold framework based on a new natural polymeric bioink.
    Dorati R; Chiesa E; Riva F; Modena T; Marconi S; Auricchio F; Genta I; Conti B
    J Pharm Pharmacol; 2022 Jan; 74(1):57-66. PubMed ID: 34402908
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Standardized 3D Bioprinting of Soft Tissue Models with Human Primary Cells.
    Rimann M; Bono E; Annaheim H; Bleisch M; Graf-Hausner U
    J Lab Autom; 2016 Aug; 21(4):496-509. PubMed ID: 25609254
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Perspectives on Scaffold Designs with Roles in Liver Cell Asymmetry and Medical and Industrial Applications by Using a New Type of Specialized 3D Bioprinter.
    Harbuz I; Banciu DD; David R; Cercel C; Cotîrță O; Ciurea BM; Radu SM; Dinescu S; Jinga SI; Banciu A
    Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37834167
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Construction of 3D in vitro models by bioprinting human pluripotent stem cells: Challenges and opportunities.
    Salaris F; Rosa A
    Brain Res; 2019 Nov; 1723():146393. PubMed ID: 31425681
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs.
    Colosi C; Costantini M; Barbetta A; Dentini M
    Methods Mol Biol; 2017; 1612():369-380. PubMed ID: 28634956
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Three-dimensional direct cell bioprinting for tissue engineering.
    Ozler SB; Bakirci E; Kucukgul C; Koc B
    J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2530-2544. PubMed ID: 27689939
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Extrusion-Based Bioprinting: Current Standards and Relevancy for Human-Sized Tissue Fabrication.
    Willson K; Ke D; Kengla C; Atala A; Murphy SV
    Methods Mol Biol; 2020; 2140():65-92. PubMed ID: 32207106
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Methods for biomaterials printing: A short review and perspective.
    Shokrani H; Shokrani A; Saeb MR
    Methods; 2022 Oct; 206():1-7. PubMed ID: 35917856
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Designing Cost-Effective Open-Source Multihead 3D Bioprinters.
    Chimene D; Deo KA; Thomas J; Dahle L; Mandrona C; Gaharwar AK
    GEN Biotechnol; 2022 Aug; 1(4):386-400. PubMed ID: 36061222
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Design and Synthesis of Stem Cell-Laden Keratin/Glycol Chitosan Methacrylate Bioinks for 3D Bioprinting.
    Yu KF; Lu TY; Li YE; Teng KC; Chen YC; Wei Y; Lin TE; Cheng NC; Yu J
    Biomacromolecules; 2022 Jul; 23(7):2814-2826. PubMed ID: 35438970
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Expanding Embedded 3D Bioprinting Capability for Engineering Complex Organs with Freeform Vascular Networks.
    Fang Y; Guo Y; Wu B; Liu Z; Ye M; Xu Y; Ji M; Chen L; Lu B; Nie K; Wang Z; Luo J; Zhang T; Sun W; Xiong Z
    Adv Mater; 2023 Jun; 35(22):e2205082. PubMed ID: 36796025
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inner Workings: 3D printer innovations tackle complexity of metamaterials, living tissue.
    Bourzac K
    Proc Natl Acad Sci U S A; 2017 Apr; 114(16):4034-4036. PubMed ID: 28420749
    [No Abstract]   [Full Text] [Related]  

  • 57. Nanomaterials for bioprinting: functionalization of tissue-specific bioinks.
    Theus AS; Ning L; Jin L; Roeder RK; Zhang J; Serpooshan V
    Essays Biochem; 2021 Aug; 65(3):429-439. PubMed ID: 34223619
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanical properties of polycaprolactone (PCL) scaffolds for hybrid 3D-bioprinting with alginate-gelatin hydrogel.
    Koch F; Thaden O; Conrad S; Tröndle K; Finkenzeller G; Zengerle R; Kartmann S; Zimmermann S; Koltay P
    J Mech Behav Biomed Mater; 2022 Jun; 130():105219. PubMed ID: 35413680
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Three-dimensional printing: The potential technology widely used in medical fields.
    Li H; Fan W; Zhu X
    J Biomed Mater Res A; 2020 Nov; 108(11):2217-2229. PubMed ID: 32363725
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 3D bioprinting of structural proteins.
    Włodarczyk-Biegun MK; Del Campo A
    Biomaterials; 2017 Jul; 134():180-201. PubMed ID: 28477541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.