These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36587315)

  • 1. Stochastic averaging for a type of fractional differential equations with multiplicative fractional Brownian motion.
    Wang R; Xu Y; Pei B
    Chaos; 2022 Dec; 32(12):123135. PubMed ID: 36587315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the averaging principle for stochastic differential equations involving Caputo fractional derivative.
    Xiao G; Fečkan M; Wang J
    Chaos; 2022 Oct; 32(10):101105. PubMed ID: 36319308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Approximation of SDEs: a stochastic sewing approach.
    Butkovsky O; Dareiotis K; Gerencsér M
    Probab Theory Relat Fields; 2021; 181(4):975-1034. PubMed ID: 34898772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Averaging principle for a type of Caputo fractional stochastic differential equations.
    Guo Z; Hu J; Yuan C
    Chaos; 2021 May; 31(5):053123. PubMed ID: 34240919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An averaging principle for fractional stochastic differential equations with Lévy noise.
    Xu W; Duan J; Xu W
    Chaos; 2020 Aug; 30(8):083126. PubMed ID: 32872803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal control of stochastic system with Fractional Brownian Motion.
    Zhao C; Zhai Z; Du Q
    Math Biosci Eng; 2021 Jun; 18(5):5625-5634. PubMed ID: 34517504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of locally self-similar processes using multifractional Brownian motion of Riemann-Liouville type.
    Muniandy SV; Lim SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):046104. PubMed ID: 11308909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Path integrals for fractional Brownian motion and fractional Gaussian noise.
    Meerson B; Bénichou O; Oshanin G
    Phys Rev E; 2022 Dec; 106(6):L062102. PubMed ID: 36671110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllability of fractional higher order stochastic integrodifferential systems with fractional Brownian motion.
    Sathiyaraj T; Balasubramaniam P
    ISA Trans; 2018 Nov; 82():107-119. PubMed ID: 29198978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical Solutions for Multi-Time Scale Fractional Stochastic Differential Equations Driven by Fractional Brownian Motion and Their Applications.
    Ding XL; Nieto JJ
    Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inertia triggers nonergodicity of fractional Brownian motion.
    Cherstvy AG; Wang W; Metzler R; Sokolov IM
    Phys Rev E; 2021 Aug; 104(2-1):024115. PubMed ID: 34525594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First passage times for a tracer particle in single file diffusion and fractional Brownian motion.
    Sanders LP; Ambjörnsson T
    J Chem Phys; 2012 May; 136(17):175103. PubMed ID: 22583268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equivalent system for a multiple-rational-order fractional differential system.
    Li C; Zhang F; Kurths J; Zeng F
    Philos Trans A Math Phys Eng Sci; 2013 May; 371(1990):20120156. PubMed ID: 23547233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mean-squared-displacement statistical test for fractional Brownian motion.
    Sikora G; Burnecki K; Wyłomańska A
    Phys Rev E; 2017 Mar; 95(3-1):032110. PubMed ID: 28415337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exponential stability for neutral stochastic functional partial differential equations driven by Brownian motion and fractional Brownian motion.
    Zhang X; Ruan D
    J Inequal Appl; 2018; 2018(1):201. PubMed ID: 30839575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models.
    Wang W; Metzler R; Cherstvy AG
    Phys Chem Chem Phys; 2022 Aug; 24(31):18482-18504. PubMed ID: 35838015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of MDOF strongly nonlinear systems to fractional Gaussian noises.
    Deng ML; Zhu WQ
    Chaos; 2016 Aug; 26(8):084313. PubMed ID: 27586630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time averaging and emerging nonergodicity upon resetting of fractional Brownian motion and heterogeneous diffusion processes.
    Wang W; Cherstvy AG; Kantz H; Metzler R; Sokolov IM
    Phys Rev E; 2021 Aug; 104(2-1):024105. PubMed ID: 34525678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing of Multifractional Brownian Motion.
    Balcerek M; Burnecki K
    Entropy (Basel); 2020 Dec; 22(12):. PubMed ID: 33322676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding Short-Range Memory Effects in Deep Neural Networks.
    Tan C; Zhang J; Liu J
    IEEE Trans Neural Netw Learn Syst; 2024 Aug; 35(8):10576-10590. PubMed ID: 37027555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.