These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 36587363)
1. Quantifying chaos using Lagrangian descriptors. Hillebrand M; Zimper S; Ngapasare A; Katsanikas M; Wiggins S; Skokos C Chaos; 2022 Dec; 32(12):123122. PubMed ID: 36587363 [TBL] [Abstract][Full Text] [Related]
2. Performance analysis of indicators of chaos for nonlinear dynamical systems. Bazzani A; Giovannozzi M; Montanari CE; Turchetti G Phys Rev E; 2023 Jun; 107(6-1):064209. PubMed ID: 37464644 [TBL] [Abstract][Full Text] [Related]
3. Lagrangian descriptors for open maps. Carlo GG; Borondo F Phys Rev E; 2020 Feb; 101(2-1):022208. PubMed ID: 32168688 [TBL] [Abstract][Full Text] [Related]
4. An Improved Calculation Formula of the Extended Entropic Chaos Degree and Its Application to Two-Dimensional Chaotic Maps. Inoue K Entropy (Basel); 2021 Nov; 23(11):. PubMed ID: 34828209 [TBL] [Abstract][Full Text] [Related]
5. Disentangling regular and chaotic motion in the standard map using complex network analysis of recurrences in phase space. Zou Y; Donner RV; Thiel M; Kurths J Chaos; 2016 Feb; 26(2):023120. PubMed ID: 26931601 [TBL] [Abstract][Full Text] [Related]
6. Using the small alignment index chaos indicator to characterize the vibrational dynamics of a molecular system: LiNC-LiCN. Benitez P; Losada JC; Benito RM; Borondo F Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042918. PubMed ID: 26565315 [TBL] [Abstract][Full Text] [Related]
7. Chaos and the continuum limit in the gravitational N-body problem. II. Nonintegrable potentials. Sideris IV; Kandrup HE Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066203. PubMed ID: 12188811 [TBL] [Abstract][Full Text] [Related]
9. Breaking of integrability and conservation leading to Hamiltonian chaotic system and its energy-based coexistence analysis. Qi G; Gou T; Hu J; Chen G Chaos; 2021 Jan; 31(1):013101. PubMed ID: 33754774 [TBL] [Abstract][Full Text] [Related]
10. Transcritical bifurcations in nonintegrable Hamiltonian systems. Brack M; Tanaka K Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046205. PubMed ID: 18517708 [TBL] [Abstract][Full Text] [Related]
11. Analysis of Chaotic Dynamics by the Extended Entropic Chaos Degree. Inoue K Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741547 [TBL] [Abstract][Full Text] [Related]
12. Orbits of charged particles trapped in a dipole magnetic field. Liu R; Liu S; Zhu F; Chen Q; He Y; Cai C Chaos; 2022 Apr; 32(4):043104. PubMed ID: 35489861 [TBL] [Abstract][Full Text] [Related]
13. Lagrangian descriptors: The shearless curve and the shearless attractor. Simile Baroni R; de Carvalho RE Phys Rev E; 2024 Feb; 109(2-1):024202. PubMed ID: 38491698 [TBL] [Abstract][Full Text] [Related]
14. Measure of orbital stickiness and chaos strength. Sideris IV Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066217. PubMed ID: 16906956 [TBL] [Abstract][Full Text] [Related]
15. Network analysis of chaotic systems through unstable periodic orbits. Kobayashi MU; Saiki Y Chaos; 2017 Aug; 27(8):081103. PubMed ID: 28863482 [TBL] [Abstract][Full Text] [Related]
16. Hamiltonian Computational Chemistry: Geometrical Structures in Chemical Dynamics and Kinetics. Farantos SC Entropy (Basel); 2024 Apr; 26(5):. PubMed ID: 38785648 [TBL] [Abstract][Full Text] [Related]
17. Modeling and Analysis of a Three-Terminal-Memristor-Based Conservative Chaotic System. Wang Z; Qi G Entropy (Basel); 2021 Jan; 23(1):. PubMed ID: 33406791 [TBL] [Abstract][Full Text] [Related]
18. Chaos computing in terms of periodic orbits. Kia B; Spano ML; Ditto WL Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036207. PubMed ID: 22060475 [TBL] [Abstract][Full Text] [Related]
19. Optimal periodic orbits of continuous time chaotic systems. Yang TH; Hunt BR; Ott E Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):1950-9. PubMed ID: 11088659 [TBL] [Abstract][Full Text] [Related]
20. Symplectic Gaussian process regression of maps in Hamiltonian systems. Rath K; Albert CG; Bischl B; von Toussaint U Chaos; 2021 May; 31(5):053121. PubMed ID: 34240952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]