These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36587457)

  • 1. Scaling of ear morphology across 127 bird species and its implications for hearing performance.
    Zeyl JN; Snelling EP; Joo R; Clusella-Trullas S
    Hear Res; 2023 Feb; 428():108679. PubMed ID: 36587457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aquatic birds have middle ears adapted to amphibious lifestyles.
    Zeyl JN; Snelling EP; Connan M; Basille M; Clay TA; Joo R; Patrick SC; Phillips RA; Pistorius PA; Ryan PG; Snyman A; Clusella-Trullas S
    Sci Rep; 2022 Mar; 12(1):5251. PubMed ID: 35347167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrasonic hearing in birds: a review of audiometry and hypothesized structure-function relationships.
    Zeyl JN; den Ouden O; Köppl C; Assink J; Christensen-Dalsgaard J; Patrick SC; Clusella-Trullas S
    Biol Rev Camb Philos Soc; 2020 Aug; 95(4):1036-1054. PubMed ID: 32237036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaling of the avian middle ear.
    Peacock J; Spellman GM; Greene NT; Tollin DJ
    Hear Res; 2020 Sep; 395():108017. PubMed ID: 32709398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Auditory Neuroscience: Understanding the Evolution and Function of Ears.
    Manley GA
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):1-24. PubMed ID: 27539715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What middle ear parameters tell about impedance matching and high frequency hearing.
    Hemilä S; Nummela S; Reuter T
    Hear Res; 1995 May; 85(1-2):31-44. PubMed ID: 7559177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Better late than never: effective air-borne hearing of toads delayed by late maturation of the tympanic middle ear structures.
    Womack MC; Christensen-Dalsgaard J; Hoke KL
    J Exp Biol; 2016 Oct; 219(Pt 20):3246-3252. PubMed ID: 27520654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of age and size in the ears of gekkonomorph lizards: middle-ear morphology with evolutionary implications.
    Werner YL; Safford SD; Seifan M; Saunders JC
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Mar; 283(1):212-23. PubMed ID: 15685610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Of mice, moles and guinea pigs: functional morphology of the middle ear in living mammals.
    Mason MJ
    Hear Res; 2013 Jul; 301():4-18. PubMed ID: 23099208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How flexibility and eardrum cone shape affect sound conduction in single-ossicle ears: a dynamic model study of the chicken middle ear.
    Muyshondt PGG; Dirckx JJJ
    Biomech Model Mechanobiol; 2020 Feb; 19(1):233-249. PubMed ID: 31372910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlations between auditory structures and hearing sensitivity in non-human primates.
    Coleman MN; Colbert MW
    J Morphol; 2010 May; 271(5):511-32. PubMed ID: 20025067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sound localization in the lizard using internally coupled ears: A finite-element approach.
    Livens P; Muyshondt PGG; Dirckx JJJ
    Hear Res; 2019 Jul; 378():23-32. PubMed ID: 30704801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of age and size in the ears of gekkotan lizards: auditory sensitivity, its determinants, and new insights into tetrapod middle-ear function.
    Werner YL; Montgomery LG; Seifan M; Saunders JC
    Pflugers Arch; 2008 Aug; 456(5):951-67. PubMed ID: 18239935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primate auditory diversity and its influence on hearing performance.
    Coleman MN; Ross CF
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Nov; 281(1):1123-37. PubMed ID: 15470672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The middle ear of gekkonoid lizards: interspecific variation of structure in relation to body size and to auditory sensitivity.
    Werner YL; Igić PG
    Hear Res; 2002 May; 167(1-2):33-45. PubMed ID: 12117528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantitative morphological analysis of the inner ear of galliform birds.
    Corfield JR; Krilow JM; Vande Ligt MN; Iwaniuk AN
    Hear Res; 2013 Oct; 304():111-27. PubMed ID: 23871766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Middle ear pneumatization in nonhuman primates: A comparative analysis.
    Bernardi M; Couette S; Chateau Smith C; Montuire S
    Am J Phys Anthropol; 2019 Jul; 169(3):540-556. PubMed ID: 31037737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative anatomy of the external and middle ear of palaeognathous birds.
    Starck JM
    Adv Anat Embryol Cell Biol; 1995; 131():1-137. PubMed ID: 7572331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional anatomy of the middle and inner ears of the red fox, in comparison to domestic dogs and cats.
    Malkemper EP; Mason MJ; Burda H
    J Anat; 2020 Jun; 236(6):980-995. PubMed ID: 32068262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Middle ear cavity morphology is consistent with an aquatic origin for testudines.
    Willis KL; Christensen-Dalsgaard J; Ketten DR; Carr CE
    PLoS One; 2013; 8(1):e54086. PubMed ID: 23342082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.