These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36587664)

  • 41. Assessment of goethite-combined/modified biochar for cadmium and arsenic remediation in alkaline paddy soil.
    Abdelrhman F; Gao J; Ali U; Wan N; Hu H
    Environ Sci Pollut Res Int; 2022 Jun; 29(27):40745-40754. PubMed ID: 35083675
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Remediation Effect and Mechanism of Inorganic Passivators on Cadmium Contaminated Acidic Paddy Soil].
    Zhang J; Kong FY; Lu SG
    Huan Jing Ke Xue; 2022 Oct; 43(10):4679-4686. PubMed ID: 36224153
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of steel slag amendments on accumulation of cadmium and arsenic by rice (Oryza sativa) in a historically contaminated paddy field.
    He H; Xiao Q; Yuan M; Huang R; Sun X; Wang X; Zhao H
    Environ Sci Pollut Res Int; 2020 Nov; 27(32):40001-40008. PubMed ID: 32651791
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of amendment of biochar supplemented with Si on Cd mobility and rice uptake over three rice growing seasons in an acidic Cd-tainted paddy from central South China.
    Sui F; Wang J; Zuo J; Joseph S; Munroe P; Drosos M; Li L; Pan G
    Sci Total Environ; 2020 Mar; 709():136101. PubMed ID: 31905580
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of calcium and iron-enriched biochar on arsenic and cadmium accumulation from soil to rice paddy tissues.
    Islam MS; Magid ASIA; Chen Y; Weng L; Ma J; Arafat MY; Khan ZH; Li Y
    Sci Total Environ; 2021 Sep; 785():147163. PubMed ID: 33940407
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biochar significantly alters rhizobacterial communities and reduces Cd concentration in rice grains grown on Cd-contaminated soils.
    Wang R; Wei S; Jia P; Liu T; Hou D; Xie R; Lin Z; Ge J; Qiao Y; Chang X; Lu L; Tian S
    Sci Total Environ; 2019 Aug; 676():627-638. PubMed ID: 31051368
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of magnetic hydroxyapatite loaded biochar on Cd removal and passivation in paddy soil and its accumulation in rice: a 2-year field study.
    Liu X; Wang W; Xiao J; Zhang H; Zhang Y; Xiao W
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):9865-9873. PubMed ID: 36059012
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inoculation of Cd-contaminated paddy soil with biochar-supported microbial cell composite: A novel approach to reducing cadmium accumulation in rice grains.
    Liu Y; Tie B; Peng O; Luo H; Li D; Liu S; Lei M; Wei X; Liu X; Du H
    Chemosphere; 2020 May; 247():125850. PubMed ID: 31931314
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Growth and Cd uptake by rice (Oryza sativa) in acidic and Cd-contaminated paddy soils amended with steel slag.
    He H; Tam NFY; Yao A; Qiu R; Li WC; Ye Z
    Chemosphere; 2017 Dec; 189():247-254. PubMed ID: 28942250
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Different composites inhibit Cd accumulation in grains under the rice-oilseed rape rotation mode of karst area: A field study.
    Lou F; Fu T; He G; Tian W; Wen J; Yang M; Wei X; He Y; He T
    Ecotoxicol Environ Saf; 2023 May; 256():114884. PubMed ID: 37054472
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of straw-derived humic acid-like substance on the availability of Cd/As in paddy soil and their accumulation in rice grain.
    Li B; Zhang T; Zhang Q; Zhu QH; Huang DY; Zhu HH; Xu C; Su SM; Zeng XB
    Chemosphere; 2022 Aug; 300():134368. PubMed ID: 35390414
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of combined amendments on crop yield and cadmium uptake in two cadmium contaminated soils under rice-wheat rotation.
    Guo F; Ding C; Zhou Z; Huang G; Wang X
    Ecotoxicol Environ Saf; 2018 Feb; 148():303-310. PubMed ID: 29091832
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of combined soil amendments on Cd accumulation, translocation and food safety in rice: a field study in southern China.
    Shi L; Guo Z; Liu S; Xiao X; Peng C; Feng W; Ran H; Zeng P
    Environ Geochem Health; 2022 Aug; 44(8):2451-2463. PubMed ID: 34282515
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Soil amendments with ZnSO
    Huang H; Tang ZX; Qi HY; Ren XT; Zhao FJ; Wang P
    Environ Pollut; 2022 Feb; 294():118650. PubMed ID: 34883148
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mitigation of rice cadmium (Cd) accumulation by joint application of organic amendments and selenium (Se) in high-Cd-contaminated soils.
    Liu N; Jiang Z; Li X; Liu H; Li N; Wei S
    Chemosphere; 2020 Feb; 241():125106. PubMed ID: 31683428
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modest amendment of sewage sludge biochar to reduce the accumulation of cadmium into rice(Oryza sativa L.): A field study.
    Zhang Y; Chen T; Liao Y; Reid BJ; Chi H; Hou Y; Cai C
    Environ Pollut; 2016 Sep; 216():819-825. PubMed ID: 27368131
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of wheat straw derived biochar on cadmium availability in a paddy soil and its accumulation in rice.
    Jing F; Chen C; Chen X; Liu W; Wen X; Hu S; Yang Z; Guo B; Xu Y; Yu Q
    Environ Pollut; 2020 Feb; 257():113592. PubMed ID: 31761591
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Quantitative Relationship Between Paddy Soil Properties and Cadmium Content in Rice Grains].
    Wang MM; He MY; Su DC
    Huan Jing Ke Xue; 2018 Apr; 39(4):1918-1925. PubMed ID: 29965019
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cadmium and arsenic accumulation during the rice growth period under in situ remediation.
    Gu JF; Zhou H; Tang HL; Yang WT; Zeng M; Liu ZM; Peng PQ; Liao BH
    Ecotoxicol Environ Saf; 2019 Apr; 171():451-459. PubMed ID: 30639871
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Attapulgite and processed oyster shell powder effectively reduce cadmium accumulation in grains of rice growing in a contaminated acidic paddy field.
    He L; Meng J; Wang Y; Tang X; Liu X; Tang C; Ma LQ; Xu J
    Ecotoxicol Environ Saf; 2021 Feb; 209():111840. PubMed ID: 33383343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.