These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 36587671)

  • 61. The significance of shifts in precipitation patterns: modelling the impacts of climate change and glacier retreat on extreme flood events in Denali National Park, Alaska.
    Crossman J; Futter MN; Whitehead PG
    PLoS One; 2013; 8(9):e74054. PubMed ID: 24023925
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Deposition of radiocesium on the river flood plains around Fukushima.
    Saegusa H; Ohyama T; Iijima K; Onoe H; Takeuchi R; Hagiwara H
    J Environ Radioact; 2016 Nov; 164():36-46. PubMed ID: 27414488
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Assessment of the impact of flood on groundwater hydrochemistry and its suitability for drinking and irrigation in the River Periyar Lower Basin, India.
    Krishnakumar A; Jose J; Kaliraj S; Aditya SK; Krishnan KA
    Environ Sci Pollut Res Int; 2022 Apr; 29(19):28267-28306. PubMed ID: 34988810
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Seasonal variation of heavy metals in suspended sediments downstream the Three Gorges Dam in the Yangtze River.
    Guo Y; Deng B
    Environ Monit Assess; 2022 Aug; 194(9):660. PubMed ID: 35945328
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Terrestrial contributions to the aquatic food web in the middle Yangtze River.
    Wang J; Gu B; Huang J; Han X; Lin G; Zheng F; Li Y
    PLoS One; 2014; 9(7):e102473. PubMed ID: 25047656
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Characteristics of (micro)plastic transport in the upper reaches of the Yangtze River.
    Han N; Ao H; Mai Z; Zhao Q; Wu C
    Sci Total Environ; 2023 Jan; 855():158887. PubMed ID: 36150593
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Response of the turbidity maximum zone in the Yangtze River Estuary due to human activities during the dry season.
    Chen X; Shen Z; Yang Y
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18466-81. PubMed ID: 27287491
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A probabilistic modeling framework for assessing the impacts of large reservoirs on river thermal regimes - A case of the Yangtze River.
    Tao Y; Wang Y; Wang D; Ni L; Wu J
    Environ Res; 2020 Apr; 183():109221. PubMed ID: 32059160
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An integrated approach for investigating the correlation between floods and river morphology: A case study of the Saalach River, Germany.
    Reisenbüchler M; Bui MD; Skublics D; Rutschmann P
    Sci Total Environ; 2019 Jan; 647():814-826. PubMed ID: 30096671
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Influence of catastrophic flood on microplastics organization in surface water of the Three Gorges Reservoir, China.
    Xu D; Gao B; Wan X; Peng W; Zhang B
    Water Res; 2022 Mar; 211():118018. PubMed ID: 35021122
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effects of a Proposed Hydraulic Project on the Hydrodynamics in the Poyang Lake Floodplain System, China.
    Zhao G; Li Y
    Int J Environ Res Public Health; 2021 Jul; 18(15):. PubMed ID: 34360365
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Spatial scale effect on sediment dynamics in basin-wide floods within a typical agro-watershed: A case study in the hilly loess region of the Chinese Loess Plateau.
    Zhang LT; Li ZB; Wang SS
    Sci Total Environ; 2016 Dec; 572():476-486. PubMed ID: 27544352
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Occurrence and transport of perfluoroalkyl acids (PFAAs) in a Yangtze River water diversion project during water diversion and flooding.
    Liu T; Qian X; Wang S; Wang H; Wei S; Chen H
    Water Res; 2021 Oct; 205():117662. PubMed ID: 34562805
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The impact of the 2016 flood event in Anhui Province, China on infectious diarrhea disease: An interrupted time-series study.
    Zhang N; Song D; Zhang J; Liao W; Miao K; Zhong S; Lin S; Hajat S; Yang L; Huang C
    Environ Int; 2019 Jun; 127():801-809. PubMed ID: 31051323
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Sources and transport of methylmercury in the Yangtze River and the impact of the Three Gorges Dam.
    Liu M; Xie H; He Y; Zhang Q; Sun X; Yu C; Chen L; Zhang W; Zhang Q; Wang X
    Water Res; 2019 Dec; 166():115042. PubMed ID: 31520812
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China.
    Zhao Y; Zou X; Liu Q; Yao Y; Li Y; Wu X; Wang C; Yu W; Wang T
    Sci Total Environ; 2017 Dec; 607-608():920-932. PubMed ID: 28724224
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Dynamics of sediment transport in the Yangtze River and their key drivers.
    Li B; Wang Y
    Sci Total Environ; 2023 Mar; 862():160688. PubMed ID: 36496022
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effect of water flux and sediment discharge of the Yangtze River on PAHs sedimentation in the estuary.
    Li R; Feng C; Wang D; He M; Hu L; Shen Z
    Environ Monit Assess; 2016 Dec; 189(1):10. PubMed ID: 27928706
    [TBL] [Abstract][Full Text] [Related]  

  • 79. UAV-based evaluation of morphological changes induced by extreme rainfall events in meandering rivers.
    Akay SS; Özcan O; Şanlı FB; Görüm T; Şen ÖL; Bayram B
    PLoS One; 2020; 15(11):e0241293. PubMed ID: 33166295
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Impact of extreme floods on plants considering various influencing factors downstream of Luhun Reservoir, China.
    Zhang Y; Li Z; Ge W; Chen X; Xu H; Guo X; Wang T
    Sci Total Environ; 2021 May; 768():145312. PubMed ID: 33736317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.