These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36587728)

  • 1. Contryphan sequence diversity: Messy N-terminus processing, effects on chromatographic behaviour and mass spectrometric fragmentation.
    Vijayasarathy M; Kumar S; Venkatesha MA; Balaram P
    J Proteomics; 2023 Mar; 274():104805. PubMed ID: 36587728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contryphan Genes and Mature Peptides in the Venom of Nine Cone Snail Species by Transcriptomic and Mass Spectrometric Analysis.
    Vijayasarathy M; Basheer SM; Franklin JB; Balaram P
    J Proteome Res; 2017 Feb; 16(2):763-772. PubMed ID: 28152596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid mass spectral identification of contryphans. Detection of characteristic peptide ions by fragmentation of intact disulfide-bonded peptides in crude venom.
    Thakur SS; Balaram P
    Rapid Commun Mass Spectrom; 2007; 21(21):3420-6. PubMed ID: 17902199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational diversity in contryphans from Conus venom: cis-trans isomerisation and aromatic/proline interactions in the 23-membered ring of a 7-residue peptide disulfide loop.
    Sonti R; Gowd KH; Rao KN; Ragothama S; Rodriguez A; Perez JJ; Balaram P
    Chemistry; 2013 Nov; 19(45):15175-89. PubMed ID: 24115170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The first gamma-carboxyglutamic acid-containing contryphan. A selective L-type calcium ion channel blocker isolated from the venom of Conus marmoreus.
    Hansson K; Ma X; Eliasson L; Czerwiec E; Furie B; Furie BC; Rorsman P; Stenflo J
    J Biol Chem; 2004 Jul; 279(31):32453-63. PubMed ID: 15155730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of short single disulfide-containing contryphans from the venom of cone snails using de novo mass spectrometry-based sequencing methods.
    Franklin JB; Rajesh RP; Vinithkumar NV; Kirubagaran R
    Toxicon; 2017 Jun; 132():50-54. PubMed ID: 28400262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contryphan-Bt: A pyroglutamic acid containing conopeptide isolated from the venom of Conus betulinus.
    Han P; Cao Y; Liu S; Dai X; Yao G; Fan C; Wu W; Chen J
    Toxicon; 2017 Sep; 135():17-23. PubMed ID: 28554718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contryphans from Conus textile venom ducts.
    Jimenez EC; Watkins M; Juszczak LJ; Cruz LJ; Olivera BM
    Toxicon; 2001 Jun; 39(6):803-8. PubMed ID: 11137539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contryphan-Vn: a novel peptide from the venom of the Mediterranean snail Conus ventricosus.
    Massilia GR; SchininĂ  ME; Ascenzi P; Polticelli F
    Biochem Biophys Res Commun; 2001 Nov; 288(4):908-13. PubMed ID: 11688995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel M-Superfamily and T-Superfamily conotoxins and contryphans from the vermivorous snail Conus figulinus.
    Rajesh RP
    J Pept Sci; 2015 Jan; 21(1):29-39. PubMed ID: 25420928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cysteine-free cone snail venom peptides: Classification of precursor proteins and identification of mature peptides.
    Vijayasarathy M; Kumar S; Das R; Balaram P
    J Pept Sci; 2024 Apr; 30(4):e3554. PubMed ID: 38009400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cone snail prolyl-4-hydroxylase α-subunit sequences derived from transcriptomic data and mass spectrometric analysis of variable proline hydroxylation in C. amadis venom.
    Vijayasarathy M; Balaram P
    J Proteomics; 2019 Mar; 194():37-48. PubMed ID: 30593932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of contryphans from Conus loroisii and Conus amadis that target calcium channels.
    Sabareesh V; Gowd KH; Ramasamy P; Sudarslal S; Krishnan KS; Sikdar SK; Balaram P
    Peptides; 2006 Nov; 27(11):2647-54. PubMed ID: 16945451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The contryphans, a D-tryptophan-containing family of Conus peptides: interconversion between conformers.
    Jacobsen R; Jimenez EC; Grilley M; Watkins M; Hillyard D; Cruz LJ; Olivera BM
    J Pept Res; 1998 Mar; 51(3):173-9. PubMed ID: 9531419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The metal-free and calcium-bound structures of a gamma-carboxyglutamic acid-containing contryphan from Conus marmoreus, glacontryphan-M.
    Grant MA; Hansson K; Furie BC; Furie B; Stenflo J; Rigby AC
    J Biol Chem; 2004 Jul; 279(31):32464-73. PubMed ID: 15155731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing peptide libraries from Conus achatinus using mass spectrometry and cDNA sequencing: identification of delta and omega-conotoxins.
    Gowd KH; Dewan KK; Iengar P; Krishnan KS; Balaram P
    J Mass Spectrom; 2008 Jun; 43(6):791-805. PubMed ID: 18286662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass spectrometric identification and
    Jain RP; Jayaseelan BF; Wilson Alphonse CR; Mahmoud AH; Mohammed OB; Ahmed Almunqedhi BM; Rajaian Pushpabai R
    Saudi J Biol Sci; 2021 Mar; 28(3):1582-1595. PubMed ID: 33732044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel D-leucine-containing Conus peptide: diverse conformational dynamics in the contryphan family.
    Jacobsen RB; Jimenez EC; De la Cruz RG; Gray WR; Cruz LJ; Olivera BM
    J Pept Res; 1999 Aug; 54(2):93-9. PubMed ID: 10461743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteome Based de novo Sequencing of Novel Conotoxins from Marine Molluscivorous Cone Snail Conus amadis and Neurological Activities of Its Natural Venom in Zebrafish Model.
    Rajesh RP; Franklin JB; Badsha I; Arjun P; Jain RP; Vignesh MS; Kannan RR
    Protein Pept Lett; 2019; 26(11):819-833. PubMed ID: 31203793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 'conovenomic' analysis of the milked venom from the mollusk-hunting cone snail Conus textile--the pharmacological importance of post-translational modifications.
    Bergeron ZL; Chun JB; Baker MR; Sandall DW; Peigneur S; Yu PY; Thapa P; Milisen JW; Tytgat J; Livett BG; Bingham JP
    Peptides; 2013 Nov; 49():145-58. PubMed ID: 24055806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.