These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 36588342)

  • 1. The circulatory dynamics of human red blood cell homeostasis: Oxy-deoxy and PIEZO1-triggered changes.
    Lew VL
    Biophys J; 2023 Feb; 122(3):484-495. PubMed ID: 36588342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Up-down biphasic volume response of human red blood cells to PIEZO1 activation during capillary transits.
    Rogers S; Lew VL
    PLoS Comput Biol; 2021 Mar; 17(3):e1008706. PubMed ID: 33657092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PIEZO1 and the mechanism of the long circulatory longevity of human red blood cells.
    Rogers S; Lew VL
    PLoS Comput Biol; 2021 Mar; 17(3):e1008496. PubMed ID: 33690597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport.
    Jensen FB
    Acta Physiol Scand; 2004 Nov; 182(3):215-27. PubMed ID: 15491402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Piezo1 regulates shear-dependent nitric oxide production in human erythrocytes.
    Kuck L; Peart JN; Simmonds MJ
    Am J Physiol Heart Circ Physiol; 2022 Jul; 323(1):H24-H37. PubMed ID: 35559724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue Oxygenation Around Capillaries: Effects of Hematocrit and Arteriole Oxygen Condition.
    Amiri FA; Zhang J
    Bull Math Biol; 2023 May; 85(6):50. PubMed ID: 37129671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Model of Piezo1-Based Regulation of Red Blood Cell Volume.
    Svetina S; Švelc Kebe T; Božič B
    Biophys J; 2019 Jan; 116(1):151-164. PubMed ID: 30580922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red blood cells of a transgenic mouse expressing high levels of human hemoglobin S exhibit deoxy-stimulated cation flux.
    Romero JR; Fabry ME; Suzuka S; Nagel RL; Canessa M
    J Membr Biol; 1997 Oct; 159(3):187-96. PubMed ID: 9312208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes of RBC aggregation in oxygenation-deoxygenation: pH dependency and cell morphology.
    Cicha I; Suzuki Y; Tateishi N; Maeda N
    Am J Physiol Heart Circ Physiol; 2003 Jun; 284(6):H2335-42. PubMed ID: 12742832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle microvascular hemoglobin concentration and oxygenation within the contraction-relaxation cycle.
    Lutjemeier BJ; Ferreira LF; Poole DC; Townsend D; Barstow TJ
    Respir Physiol Neurobiol; 2008 Feb; 160(2):131-8. PubMed ID: 17964228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Piezo1 links mechanical forces to red blood cell volume.
    Cahalan SM; Lukacs V; Ranade SS; Chien S; Bandell M; Patapoutian A
    Elife; 2015 May; 4():. PubMed ID: 26001274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced deformability contributes to impaired deoxygenation-induced ATP release from red blood cells of older adult humans.
    Racine ML; Dinenno FA
    J Physiol; 2019 Sep; 597(17):4503-4519. PubMed ID: 31310005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of hemoglobin oxygenation in the modulation of red blood cell mechanical properties by nitric oxide.
    Uyuklu M; Meiselman HJ; Baskurt OK
    Nitric Oxide; 2009 Aug; 21(1):20-6. PubMed ID: 19362160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of gemfibrozil on sulfate transport in human erythrocytes during the oxygenation-deoxygenation cycle.
    Tellone E; Ficarra S; Scatena R; Giardina B; Kotyk A; Russo A; Colucci D; Bellocco E; Lagana' G; Galtieri A
    Physiol Res; 2008; 57(4):621-629. PubMed ID: 17705675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Piezo1 activation augments sickling propensity and the adhesive properties of sickle red blood cells in a calcium-dependent manner.
    Nader E; Conran N; Leonardo FC; Hatem A; Boisson C; Carin R; Renoux C; Costa FF; Joly P; Brito PL; Esperti S; Bernard J; Gauthier A; Poutrel S; Bertrand Y; Garcia C; Saad STO; Egée S; Connes P
    Br J Haematol; 2023 Aug; 202(3):657-668. PubMed ID: 37011913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A theoretical model for gas transport and acid/base regulation by blood flowing in microvessels.
    Huang NS; Hellums JD
    Microvasc Res; 1994 Nov; 48(3):364-88. PubMed ID: 7731399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of nitrite transport in red blood cells by hemoglobin oxygen fractional saturation.
    Vitturi DA; Teng X; Toledo JC; Matalon S; Lancaster JR; Patel RP
    Am J Physiol Heart Circ Physiol; 2009 May; 296(5):H1398-407. PubMed ID: 19286940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The volume of healthy red blood cells is optimal for advective oxygen transport in arterioles.
    Amoudruz L; Economides A; Koumoutsakos P
    Biophys J; 2024 May; 123(10):1289-1296. PubMed ID: 38641875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacological activation of PIEZO1 in human red blood cells prevents Plasmodium falciparum invasion.
    Lohia R; Allegrini B; Berry L; Guizouarn H; Cerdan R; Abkarian M; Douguet D; Honoré E; Wengelnik K
    Cell Mol Life Sci; 2023 Apr; 80(5):124. PubMed ID: 37071200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relative influence of hematocrit and red blood cell velocity on oxygen transport from capillaries to tissue.
    Lücker A; Secomb TW; Weber B; Jenny P
    Microcirculation; 2017 Apr; 24(3):. PubMed ID: 27893186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.