These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36588550)

  • 1. Deep learning automates detection of wall motion abnormalities
    Li H; Chen Z; Kahn AM; Kligerman S; Narayan HK; Contijoch FJ
    Front Cardiovasc Med; 2022; 9():1009445. PubMed ID: 36588550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of left ventricular wall motion abnormalities from volume rendering of 4DCT cardiac angiograms using deep learning.
    Chen Z; Contijoch F; Colvert GM; Manohar A; Kahn AM; Narayan HK; McVeigh E
    Front Cardiovasc Med; 2022; 9():919751. PubMed ID: 35966529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated cardiac volume assessment and cardiac long- and short-axis imaging plane prediction from electrocardiogram-gated computed tomography volumes enabled by deep learning.
    Chen Z; Rigolli M; Vigneault DM; Kligerman S; Hahn L; Narezkina A; Craine A; Lowe K; Contijoch F
    Eur Heart J Digit Health; 2021 Jun; 2(2):311-322. PubMed ID: 34223176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myocardial Regional Shortening from 4D Cardiac CT Angiography for the Detection of Left Ventricular Segmental Wall Motion Abnormality.
    Chen Z; Contijoch F; Kahn AM; Kligerman S; Narayan HK; Manohar A; McVeigh E
    Radiol Cardiothorac Imaging; 2023 Apr; 5(2):e220134. PubMed ID: 37124646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based left ventricular segmentation demonstrates improved performance on respiratory motion-resolved whole-heart reconstructions.
    Yang Y; Shah Z; Jacob AJ; Hair J; Chitiboi T; Passerini T; Yerly J; Di Sopra L; Piccini D; Hosseini Z; Sharma P; Sahu A; Stuber M; Oshinski JN
    Front Radiol; 2023; 3():1144004. PubMed ID: 37492382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Echocardiography-based AI detection of regional wall motion abnormalities and quantification of cardiac function in myocardial infarction.
    Lin X; Yang F; Chen Y; Chen X; Wang W; Chen X; Wang Q; Zhang L; Guo H; Liu B; Yu L; Pu H; Zhang P; Wu Z; Li X; Burkhoff D; He K
    Front Cardiovasc Med; 2022; 9():903660. PubMed ID: 36072864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lung tumor segmentation in 4D CT images using motion convolutional neural networks.
    Momin S; Lei Y; Tian Z; Wang T; Roper J; Kesarwala AH; Higgins K; Bradley JD; Liu T; Yang X
    Med Phys; 2021 Nov; 48(11):7141-7153. PubMed ID: 34469001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic 3D left atrial strain extraction framework on cardiac computed tomography.
    Chen L; Huang SH; Wang TH; Tseng VS; Tsao HM; Tang GJ
    Comput Methods Programs Biomed; 2024 Jul; 252():108236. PubMed ID: 38776829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully-automated global and segmental strain analysis of DENSE cardiovascular magnetic resonance using deep learning for segmentation and phase unwrapping.
    Ghadimi S; Auger DA; Feng X; Sun C; Meyer CH; Bilchick KC; Cao JJ; Scott AD; Oshinski JN; Ennis DB; Epstein FH
    J Cardiovasc Magn Reson; 2021 Mar; 23(1):20. PubMed ID: 33691739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated detection of left ventricular dyskinesis by gated blood pool SPECT.
    Nichols KJ; Van Tosh A; Wang Y; De Bondt P; Palestro CJ; Reichek N
    Nucl Med Commun; 2010 Oct; 31(10):881-8. PubMed ID: 20683365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships between blood pool and myocardial perfusion-gated SPECT global and regional left ventricular function measurements.
    Nichols KJ; Van Tosh A; Wang Y; Chen J; Garcia EV; Palestro CJ; Reichek N
    Nucl Med Commun; 2009 Apr; 30(4):292-9. PubMed ID: 19252453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated interpretation of regional left ventricular wall motion from cardiac magnetic resonance images.
    Caiani EG; Toledo E; MacEneaney P; Bardo D; Cerutti S; Lang RM; Mor-Avi V
    J Cardiovasc Magn Reson; 2006; 8(3):427-33. PubMed ID: 16755828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. U-Net based deep learning bladder segmentation in CT urography.
    Ma X; Hadjiiski LM; Wei J; Chan HP; Cha KH; Cohan RH; Caoili EM; Samala R; Zhou C; Lu Y
    Med Phys; 2019 Apr; 46(4):1752-1765. PubMed ID: 30734932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated Recognition of Regional Wall Motion Abnormalities Through Deep Neural Network Interpretation of Transthoracic Echocardiography.
    Huang MS; Wang CS; Chiang JH; Liu PY; Tsai WC
    Circulation; 2020 Oct; 142(16):1510-1520. PubMed ID: 32964749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of persistent left ventricular regional wall motion abnormalities in childhood cancer survivors after anthracycline therapy: Assessment of global left ventricular myocardial performance by 3D speckle-tracking echocardiography.
    Okuma H; Noto N; Tanikawa S; Kanezawa K; Hirai M; Shimozawa K; Yagasaki H; Shichino H; Takahashi S
    J Cardiol; 2017 Oct; 70(4):396-401. PubMed ID: 28238564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of regional wall motion abnormalities with real-time 3-dimensional echocardiography.
    Collins M; Hsieh A; Ohazama CJ; Ota T; Stetten G; Donovan CL; Kisslo J; Ryan T
    J Am Soc Echocardiogr; 1999 Jan; 12(1):7-14. PubMed ID: 9882773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of longitudinal peak systolic strain by speckle tracking echocardiography with visual assessment and myocardial perfusion SPECT in patients with regional asynergy.
    Kusunose K; Yamada H; Nishio S; Mizuguchi Y; Choraku M; Maeda Y; Hosokawa S; Yamazaki N; Tomita N; Niki T; Yamaguchi K; Koshiba K; Soeki T; Wakatsuki T; Akaike M; Sata M
    Circ J; 2011; 75(1):141-7. PubMed ID: 21099120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. External validation of a deep learning algorithm for automated echocardiographic strain measurements.
    Myhre PL; Hung CL; Frost MJ; Jiang Z; Ouwerkerk W; Teramoto K; Svedlund S; Saraste A; Hage C; Tan RS; Beussink-Nelson L; Fermer ML; Gan LM; Hummel YM; Lund LH; Shah SJ; Lam CSP; Tromp J
    Eur Heart J Digit Health; 2024 Jan; 5(1):60-68. PubMed ID: 38264705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT.
    Bruns S; Wolterink JM; Takx RAP; van Hamersvelt RW; Suchá D; Viergever MA; Leiner T; Išgum I
    Med Phys; 2020 Oct; 47(10):5048-5060. PubMed ID: 32786071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning based automated left ventricle segmentation and flow quantification in 4D flow cardiac MRI.
    Sun X; Cheng LH; Plein S; Garg P; van der Geest RJ
    J Cardiovasc Magn Reson; 2024 Summer; 26(1):100003. PubMed ID: 38211658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.