BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36589925)

  • 1. Decoupling Uniaxial Tensile Prestress and Waveguide Effects From Estimates of the Complex Shear Modulus in a Cylindrical Structure Using Transverse-Polarized Dynamic Elastography.
    Salehabadi M; Crutison J; Klatt D; Royston TJ
    J Eng Sci Med Diagn Ther; 2023 May; 6(2):021003. PubMed ID: 36589925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biaxial Tensile Prestress and Waveguide Effects on Estimates of the Complex Shear Modulus Using Optical-Based Dynamic Elastography in Plate-Like Soft Tissue Phantoms.
    Dore M; Luna A; Royston TJ
    J Eng Sci Med Diagn Ther; 2023 Feb; 6(1):011006. PubMed ID: 36590822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying uniaxial prestress and waveguide effects on dynamic elastography estimates for a cylindrical rod.
    Salehabadi M; Nammari L; Luna A; Crutison J; Klatt D; Royston TJ
    J Acoust Soc Am; 2023 Dec; 154(6):3580-3594. PubMed ID: 38038614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The combined importance of finite dimensions, anisotropy, and pre-stress in acoustoelastography.
    Crutison J; Sun M; Royston TJ
    J Acoust Soc Am; 2022 Apr; 151(4):2403. PubMed ID: 35461517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical solution for converging elliptic shear wave in a bounded transverse isotropic viscoelastic material with nonhomogeneous outer boundary.
    Guidetti M; Royston TJ
    J Acoust Soc Am; 2018 Oct; 144(4):2312. PubMed ID: 30404507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic composite material phantom to improve skeletal muscle characterization using magnetic resonance elastography.
    Guidetti M; Lorgna G; Hammersly M; Lewis P; Klatt D; Vena P; Shah R; Royston TJ
    J Mech Behav Biomed Mater; 2019 Jan; 89():199-208. PubMed ID: 30292169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic Resonance Elastography Reconstruction for Anisotropic Tissues.
    Babaei B; Fovargue D; Lloyd RA; Miller R; Jugé L; Kaplan M; Sinkus R; Nordsletten DA; Bilston LE
    Med Image Anal; 2021 Dec; 74():102212. PubMed ID: 34587584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study.
    Guo M; Abbott D; Lu M; Liu H
    Australas Phys Eng Sci Med; 2016 Mar; 39(1):187-97. PubMed ID: 26768475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shear Induced Non-Linear Elasticity Imaging: Elastography for Compound Deformations.
    Goswami S; Ahmed R; Khan S; Doyley MM; McAleavey SA
    IEEE Trans Med Imaging; 2020 Nov; 39(11):3559-3570. PubMed ID: 32746104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic resonance elastography in nonlinear viscoelastic materials under load.
    Capilnasiu A; Hadjicharalambous M; Fovargue D; Patel D; Holub O; Bilston L; Screen H; Sinkus R; Nordsletten D
    Biomech Model Mechanobiol; 2019 Feb; 18(1):111-135. PubMed ID: 30151814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harmonic viscoelastic response of 3D histology-informed white matter model.
    Wu X; Georgiadis JG; Pelegri AA
    Mol Cell Neurosci; 2022 Dec; 123():103782. PubMed ID: 36154874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of anisotropic mechanical properties in porcine brain white matter ex vivo using magnetic resonance elastography.
    Schmidt JL; Tweten DJ; Badachhape AA; Reiter AJ; Okamoto RJ; Garbow JR; Bayly PV
    J Mech Behav Biomed Mater; 2018 Mar; 79():30-37. PubMed ID: 29253729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic resonance elastography of slow and fast shear waves illuminates differences in shear and tensile moduli in anisotropic tissue.
    Schmidt JL; Tweten DJ; Benegal AN; Walker CH; Portnoi TE; Okamoto RJ; Garbow JR; Bayly PV
    J Biomech; 2016 May; 49(7):1042-1049. PubMed ID: 26920505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous Shear Wave Elastography: A New Method to Measure Viscoelastic Properties of Tendons in Vivo.
    Cortes DH; Suydam SM; Silbernagel KG; Buchanan TS; Elliott DM
    Ultrasound Med Biol; 2015 Jun; 41(6):1518-29. PubMed ID: 25796414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscoelastic properties of soft gels: comparison of magnetic resonance elastography and dynamic shear testing in the shear wave regime.
    Okamoto RJ; Clayton EH; Bayly PV
    Phys Med Biol; 2011 Oct; 56(19):6379-400. PubMed ID: 21908903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustoelasticity in soft solids: assessment of the nonlinear shear modulus with the acoustic radiation force.
    Gennisson JL; Rénier M; Catheline S; Barrière C; Bercoff J; Tanter M; Fink M
    J Acoust Soc Am; 2007 Dec; 122(6):3211-9. PubMed ID: 18247733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Requirements for accurate estimation of shear modulus by magnetic resonance elastography: A computational comparative study.
    Hu L
    Comput Methods Programs Biomed; 2020 Aug; 192():105437. PubMed ID: 32182441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of five viscoelastic models for estimating viscoelastic parameters using ultrasound shear wave elastography.
    Zhou B; Zhang X
    J Mech Behav Biomed Mater; 2018 Sep; 85():109-116. PubMed ID: 29879581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validity of measurement of shear modulus by ultrasound shear wave elastography in human pennate muscle.
    Miyamoto N; Hirata K; Kanehisa H; Yoshitake Y
    PLoS One; 2015; 10(4):e0124311. PubMed ID: 25853777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of the dynamic shear modulus of mouse brain tissue in vivo by magnetic resonance elastography.
    Atay SM; Kroenke CD; Sabet A; Bayly PV
    J Biomech Eng; 2008 Apr; 130(2):021013. PubMed ID: 18412500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.