BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 36590580)

  • 1. An induced population of
    Rossi IV; Nunes MAF; Sabatke B; Ribas HT; Winnischofer SMB; Ramos ASP; Inal JM; Ramirez MI
    Front Cell Infect Microbiol; 2022; 12():1046681. PubMed ID: 36590580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biophysical and Biochemical Comparison of Extracellular Vesicles Produced by Infective and Non-Infective Stages of
    Retana Moreira L; Prescilla-Ledezma A; Cornet-Gomez A; Linares F; Jódar-Reyes AB; Fernandez J; Ibarrola Vannucci AK; De Pablos LM; Osuna A
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translational repression by an RNA-binding protein promotes differentiation to infective forms in Trypanosoma cruzi.
    Romaniuk MA; Frasch AC; Cassola A
    PLoS Pathog; 2018 Jun; 14(6):e1007059. PubMed ID: 29864162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Further in vivo evidence implying DNA apurinic/apyrimidinic endonuclease activity in Trypanosoma cruzi oxidative stress survival.
    Valenzuela L; Sepúlveda S; Bahamondes P; Ramirez-Toloza G; Galanti N; Cabrera G
    J Cell Biochem; 2019 Oct; 120(10):16733-16740. PubMed ID: 31099049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The protein family TcTASV-C is a novel Trypanosoma cruzi virulence factor secreted in extracellular vesicles by trypomastigotes and highly expressed in bloodstream forms.
    Caeiro LD; Alba-Soto CD; Rizzi M; Solana ME; Rodriguez G; Chidichimo AM; Rodriguez ME; Sánchez DO; Levy GV; Tekiel V
    PLoS Negl Trop Dis; 2018 May; 12(5):e0006475. PubMed ID: 29727453
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Ramírez-Toloza G; Ferreira A
    Front Microbiol; 2017; 8():1667. PubMed ID: 28919885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein synthesis attenuation by phosphorylation of eIF2α is required for the differentiation of Trypanosoma cruzi into infective forms.
    Tonelli RR; Augusto Lda S; Castilho BA; Schenkman S
    PLoS One; 2011; 6(11):e27904. PubMed ID: 22114724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recently differentiated epimastigotes from Trypanosoma cruzi are infective to the mammalian host.
    Kessler RL; Contreras VT; Marliére NP; Aparecida Guarneri A; Villamizar Silva LH; Mazzarotto GACA; Batista M; Soccol VT; Krieger MA; Probst CM
    Mol Microbiol; 2017 Jun; 104(5):712-736. PubMed ID: 28240790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microvesicles released during the interaction between Trypanosoma cruzi TcI and TcII strains and host blood cells inhibit complement system and increase the infectivity of metacyclic forms of host cells in a strain-independent process.
    Wyllie MP; Ramirez MI
    Pathog Dis; 2017 Sep; 75(7):. PubMed ID: 28859399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knockout of the CCCH zinc finger protein TcZC3H31 blocks Trypanosoma cruzi differentiation into the infective metacyclic form.
    Alcantara MV; Kessler RL; Gonçalves REG; Marliére NP; Guarneri AA; Picchi GFA; Fragoso SP
    Mol Biochem Parasitol; 2018 Apr; 221():1-9. PubMed ID: 29409763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stationary phase in Trypanosoma cruzi epimastigotes as a preadaptive stage for metacyclogenesis.
    Hernández R; Cevallos AM; Nepomuceno-Mejía T; López-Villaseñor I
    Parasitol Res; 2012 Aug; 111(2):509-14. PubMed ID: 22648053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trypanosoma cruzi infection by oral route: how the interplay between parasite and host components modulates infectivity.
    Yoshida N
    Parasitol Int; 2008 Jun; 57(2):105-9. PubMed ID: 18234547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic analysis of the adaptation to prolonged starvation of the insect-dwelling
    Smircich P; Pérez-Díaz L; Hernández F; Duhagon MA; Garat B
    Front Cell Infect Microbiol; 2023; 13():1138456. PubMed ID: 37091675
    [No Abstract]   [Full Text] [Related]  

  • 14. Is It Possible to Intervene in the Capacity of
    Ramírez-Toloza G; Aguilar-Guzmán L; Valck C; Menon SS; Ferreira VP; Ferreira A
    Front Immunol; 2021; 12():789145. PubMed ID: 34975884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of resistance to lysis by the alternative complement pathway in Trypanosoma cruzi trypomastigotes: effect of specific monoclonal antibody.
    Schenkman S; Güther ML; Yoshida N
    J Immunol; 1986 Sep; 137(5):1623-8. PubMed ID: 2943798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable transfection of Trypanosoma cruzi epimastigotes with the trypomastigote-specific complement regulatory protein cDNA confers complement resistance.
    Norris KA
    Infect Immun; 1998 Jun; 66(6):2460-5. PubMed ID: 9596703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The thermal proteome stability profile of Trypanosoma cruzi in epimastigote and trypomastigote life stages.
    Coutinho JVP; Rosa-Fernandes L; Mule SN; de Oliveira GS; Manchola NC; Santiago VF; Colli W; Wrenger C; Alves MJM; Palmisano G
    J Proteomics; 2021 Sep; 248():104339. PubMed ID: 34352427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional changes during metacyclogenesis of a Colombian Trypanosoma cruzi strain.
    García-Huertas P; Cuesta-Astroz Y; Araque-Ruiz V; Cardona-Castro N
    Parasitol Res; 2023 Feb; 122(2):625-634. PubMed ID: 36567399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative proteomics of Trypanosoma cruzi during metacyclogenesis.
    de Godoy LM; Marchini FK; Pavoni DP; Rampazzo Rde C; Probst CM; Goldenberg S; Krieger MA
    Proteomics; 2012 Aug; 12(17):2694-703. PubMed ID: 22761176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms by which Factor H protects
    Menon SS; Ramirez-Toloza G; Wycoff KL; Ehinger S; Shaughnessy J; Ram S; Ferreira VP
    Front Immunol; 2024; 15():1152000. PubMed ID: 38361922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.