BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36590690)

  • 1. Fisheye transformation enhances deep-learning-based single-cell phenotyping by including cellular microenvironment.
    Toth T; Bauer D; Sukosd F; Horvath P
    Cell Rep Methods; 2022 Dec; 2(12):100339. PubMed ID: 36590690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image-based cell phenotyping with deep learning.
    Pratapa A; Doron M; Caicedo JC
    Curr Opin Chem Biol; 2021 Dec; 65():9-17. PubMed ID: 34023800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental properties of cells improve machine learning-based phenotype recognition accuracy.
    Toth T; Balassa T; Bara N; Kovacs F; Kriston A; Molnar C; Haracska L; Sukosd F; Horvath P
    Sci Rep; 2018 Jul; 8(1):10085. PubMed ID: 29973621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Datasets for face and object detection in fisheye images.
    Fu J; Bajić IV; Vaughan RG
    Data Brief; 2019 Dec; 27():104752. PubMed ID: 31886334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Face Rectification for 360° Dual-Fisheye Cameras.
    Li YH; Lo IC; Chen HH
    IEEE Trans Image Process; 2021; 30():264-276. PubMed ID: 32870793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell Type Classification and Unsupervised Morphological Phenotyping From Low-Resolution Images Using Deep Learning.
    Yao K; Rochman ND; Sun SX
    Sci Rep; 2019 Sep; 9(1):13467. PubMed ID: 31530889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-feature data repository development and analytics for image cosegmentation in high-throughput plant phenotyping.
    Quiñones R; Munoz-Arriola F; Choudhury SD; Samal A
    PLoS One; 2021; 16(9):e0257001. PubMed ID: 34473794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-Time Semantic Segmentation for Fisheye Urban Driving Images Based on ERFNet.
    Sáez Á; Bergasa LM; López-Guillén E; Romera E; Tradacete M; Gómez-Huélamo C; Del Egido J
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30691055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EmbryoNet: using deep learning to link embryonic phenotypes to signaling pathways.
    Čapek D; Safroshkin M; Morales-Navarrete H; Toulany N; Arutyunov G; Kurzbach A; Bihler J; Hagauer J; Kick S; Jones F; Jordan B; Müller P
    Nat Methods; 2023 Jun; 20(6):815-823. PubMed ID: 37156842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using iterative cluster merging with improved gap statistics to perform online phenotype discovery in the context of high-throughput RNAi screens.
    Yin Z; Zhou X; Bakal C; Li F; Sun Y; Perrimon N; Wong ST
    BMC Bioinformatics; 2008 Jun; 9():264. PubMed ID: 18534020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput phenotyping with deep learning gives insight into the genetic architecture of flowering time in wheat.
    Wang X; Xuan H; Evers B; Shrestha S; Pless R; Poland J
    Gigascience; 2019 Nov; 8(11):. PubMed ID: 31742599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepPhagy: a deep learning framework for quantitatively measuring autophagy activity in
    Zhang Y; Xie Y; Liu W; Deng W; Peng D; Wang C; Xu H; Ruan C; Deng Y; Guo Y; Lu C; Yi C; Ren J; Xue Y
    Autophagy; 2020 Apr; 16(4):626-640. PubMed ID: 31204567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Domain knowledge integration into deep learning for typhoon intensity classification.
    Higa M; Tanahara S; Adachi Y; Ishiki N; Nakama S; Yamada H; Ito K; Kitamoto A; Miyata R
    Sci Rep; 2021 Jun; 11(1):12972. PubMed ID: 34155252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human Tracking in Top-View Fisheye Images: Analysis of Familiar Similarity Measures via HOG and against Various Color Spaces.
    Talaoubrid H; Vert M; Hayat K; Magnier B
    J Imaging; 2022 Apr; 8(4):. PubMed ID: 35448242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Research on multi-class orthodontic image recognition system based on deep learning network model].
    Wang SF; Xie XJ; Zhang L; Chang S; Zuo FF; Wang YJ; Bai YX
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2023 Jun; 58(6):561-568. PubMed ID: 37272001
    [No Abstract]   [Full Text] [Related]  

  • 16. Machine learning based methodology to identify cell shape phenotypes associated with microenvironmental cues.
    Chen D; Sarkar S; Candia J; Florczyk SJ; Bodhak S; Driscoll MK; Simon CG; Dunkers JP; Losert W
    Biomaterials; 2016 Oct; 104():104-18. PubMed ID: 27449947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning for bone marrow cell detection and classification on whole-slide images.
    Wang CW; Huang SC; Lee YC; Shen YJ; Meng SI; Gaol JL
    Med Image Anal; 2022 Jan; 75():102270. PubMed ID: 34710655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Edge-Based Selection Method for Improving Regions-of-Interest Localizations Obtained Using Multiple Deep Learning Object-Detection Models in Breast Ultrasound Images.
    Daoud MI; Al-Ali A; Alazrai R; Al-Najar MS; Alsaify BA; Ali MZ; Alouneh S
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells.
    Mierke CT
    Rep Prog Phys; 2019 Jun; 82(6):064602. PubMed ID: 30947151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperspectral imaging combined with machine learning as a tool to obtain high-throughput plant salt-stress phenotyping.
    Feng X; Zhan Y; Wang Q; Yang X; Yu C; Wang H; Tang Z; Jiang D; Peng C; He Y
    Plant J; 2020 Mar; 101(6):1448-1461. PubMed ID: 31680357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.