These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 36590701)
1. Physiologic signatures within six hours of hospitalization identify acute illness phenotypes. Ren Y; Loftus TJ; Li Y; Guan Z; Ruppert MM; Datta S; Upchurch GR; Tighe PJ; Rashidi P; Shickel B; Ozrazgat-Baslanti T; Bihorac A PLOS Digit Health; 2022; 1(10):. PubMed ID: 36590701 [TBL] [Abstract][Full Text] [Related]
2. Identifying acute illness phenotypes via deep temporal interpolation and clustering network on physiologic signatures. Ren Y; Li Y; Loftus TJ; Balch J; Abbott KL; Ruppert MM; Guan Z; Shickel B; Rashidi P; Ozrazgat-Baslanti T; Bihorac A Sci Rep; 2024 Apr; 14(1):8442. PubMed ID: 38600110 [TBL] [Abstract][Full Text] [Related]
3. Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis. Seymour CW; Kennedy JN; Wang S; Chang CH; Elliott CF; Xu Z; Berry S; Clermont G; Cooper G; Gomez H; Huang DT; Kellum JA; Mi Q; Opal SM; Talisa V; van der Poll T; Visweswaran S; Vodovotz Y; Weiss JC; Yealy DM; Yende S; Angus DC JAMA; 2019 May; 321(20):2003-2017. PubMed ID: 31104070 [TBL] [Abstract][Full Text] [Related]
4. Identification and Prediction of Clinical Phenotypes in Hospitalized Patients With COVID-19: Machine Learning From Medical Records. Velez T; Wang T; Garibaldi B; Singman E; Koutroulis I JMIR Form Res; 2023 Oct; 7():e46807. PubMed ID: 37642512 [TBL] [Abstract][Full Text] [Related]
6. Signatures of Subacute Potentially Catastrophic Illness in the ICU: Model Development and Validation. Moss TJ; Lake DE; Calland JF; Enfield KB; Delos JB; Fairchild KD; Moorman JR Crit Care Med; 2016 Sep; 44(9):1639-48. PubMed ID: 27452809 [TBL] [Abstract][Full Text] [Related]
7. Clinically Distinct Subtypes of Acute Kidney Injury on Hospital Admission Identified by Machine Learning Consensus Clustering. Thongprayoon C; Vaitla P; Nissaisorakarn V; Mao MA; Genovez JLZ; Kattah AG; Pattharanitima P; Vallabhajosyula S; Keddis MT; Qureshi F; Dillon JJ; Garovic VD; Kashani KB; Cheungpasitporn W Med Sci (Basel); 2021 Sep; 9(4):. PubMed ID: 34698185 [TBL] [Abstract][Full Text] [Related]
9. Biological signatures and prediction of an immunosuppressive status-persistent critical illness-among orthopedic trauma patients using machine learning techniques. Lei M; Han Z; Wang S; Guo C; Zhang X; Song Y; Lin F; Huang T Front Immunol; 2022; 13():979877. PubMed ID: 36325351 [TBL] [Abstract][Full Text] [Related]
11. Five novel clinical phenotypes for critically ill patients with mechanical ventilation in intensive care units: a retrospective and multi database study. Su L; Zhang Z; Zheng F; Pan P; Hong N; Liu C; He J; Zhu W; Long Y; Liu D Respir Res; 2020 Dec; 21(1):325. PubMed ID: 33302940 [TBL] [Abstract][Full Text] [Related]
12. Adaptation and Validation of a Pediatric Sequential Organ Failure Assessment Score and Evaluation of the Sepsis-3 Definitions in Critically Ill Children. Matics TJ; Sanchez-Pinto LN JAMA Pediatr; 2017 Oct; 171(10):e172352. PubMed ID: 28783810 [TBL] [Abstract][Full Text] [Related]
13. Machine Learning Consensus Clustering Approach for Patients with Lactic Acidosis in Intensive Care Units. Pattharanitima P; Thongprayoon C; Petnak T; Srivali N; Gembillo G; Kaewput W; Chesdachai S; Vallabhajosyula S; O'Corragain OA; Mao MA; Garovic VD; Qureshi F; Dillon JJ; Cheungpasitporn W J Pers Med; 2021 Nov; 11(11):. PubMed ID: 34834484 [TBL] [Abstract][Full Text] [Related]
14. [Association between early central venous pressure measurement and mortality in patients with sepsis: a data analysis of MIMIC-III database]. Chen H; Gong S; Shang X; Yu R Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2021 Jul; 33(7):786-791. PubMed ID: 34412745 [TBL] [Abstract][Full Text] [Related]
15. Distinct phenotypes of hospitalized patients with hyperkalemia by machine learning consensus clustering and associated mortality risks. Thongprayoon C; Kattah AG; Mao MA; Keddis MT; Pattharanitima P; Vallabhajosyula S; Nissaisorakarn V; Erickson SB; Dillon JJ; Garovic VD; Cheungpasitporn W QJM; 2022 Jul; 115(7):442-449. PubMed ID: 34270780 [TBL] [Abstract][Full Text] [Related]
16. Survival prediction in intensive-care units based on aggregation of long-term disease history and acute physiology: a retrospective study of the Danish National Patient Registry and electronic patient records. Nielsen AB; Thorsen-Meyer HC; Belling K; Nielsen AP; Thomas CE; Chmura PJ; Lademann M; Moseley PL; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Perner A; Brunak S Lancet Digit Health; 2019 Jun; 1(2):e78-e89. PubMed ID: 33323232 [TBL] [Abstract][Full Text] [Related]
17. Early Prediction of Acute Kidney Injury in the Emergency Department With Machine-Learning Methods Applied to Electronic Health Record Data. Martinez DA; Levin SR; Klein EY; Parikh CR; Menez S; Taylor RA; Hinson JS Ann Emerg Med; 2020 Oct; 76(4):501-514. PubMed ID: 32713624 [TBL] [Abstract][Full Text] [Related]
18. Development, Validation, and Clinical Utility Assessment of a Prognostic Score for 1-Year Unplanned Rehospitalization or Death of Adult Sepsis Survivors. Shankar-Hari M; Rubenfeld GD; Ferrando-Vivas P; Harrison DA; Rowan K JAMA Netw Open; 2020 Sep; 3(9):e2013580. PubMed ID: 32926114 [TBL] [Abstract][Full Text] [Related]
19. Defining persistent critical illness based on growth trajectories in patients with sepsis. Zhang Z; Ho KM; Gu H; Hong Y; Yu Y Crit Care; 2020 Feb; 24(1):57. PubMed ID: 32070393 [TBL] [Abstract][Full Text] [Related]