These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36591120)

  • 1. A Review on Interactions between Amino Acids and Surfactants as Well as Their Impact on Corrosion Inhibition.
    Singh Raman AP; Muhammad AA; Singh H; Singh T; Mkhize Z; Jain P; Singh SK; Bahadur I; Singh P
    ACS Omega; 2022 Dec; 7(51):47471-47489. PubMed ID: 36591120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular-thermodynamic theory of micellization of pH-sensitive surfactants.
    Goldsipe A; Blankschtein D
    Langmuir; 2006 Apr; 22(8):3547-59. PubMed ID: 16584226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling counterion binding in ionic-nonionic and ionic-zwitterionic binary surfactant mixtures.
    Goldsipe A; Blankschtein D
    Langmuir; 2005 Oct; 21(22):9850-65. PubMed ID: 16229501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micelle formation of nonionic surfactants in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate: surfactant chain length dependence of the critical micelle concentration.
    Inoue T; Yamakawa H
    J Colloid Interface Sci; 2011 Apr; 356(2):798-802. PubMed ID: 21295785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A detailed assessment on the interaction of sodium alginate with a surface-active ionic liquid and a conventional surfactant: a multitechnique approach.
    Das S; Ghosh S
    Phys Chem Chem Phys; 2022 Jun; 24(22):13738-13762. PubMed ID: 35612295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1045-62. PubMed ID: 17266258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic characterization of 3-[(3-cholamidopropyl)-dimethylammonium]-1-propanesulfonate (CHAPS) micellization using isothermal titration calorimetry: temperature, salt, and pH dependence.
    Kroflič A; Sarac B; Bešter-Rogač M
    Langmuir; 2012 Jul; 28(28):10363-71. PubMed ID: 22686523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of Caffeic Acid with SDS Micellar Aggregates.
    Cid A; Moldes OA; Mejuto JC; Simal-Gandara J
    Molecules; 2019 Mar; 24(7):. PubMed ID: 30934775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How chain length and charge affect surfactant denaturation of acyl coenzyme A binding protein (ACBP).
    Andersen KK; Otzen DE
    J Phys Chem B; 2009 Oct; 113(42):13942-52. PubMed ID: 19788195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-surfactant interactions: a tale of many states.
    Otzen D
    Biochim Biophys Acta; 2011 May; 1814(5):562-91. PubMed ID: 21397738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A recent overview of surfactant-drug interactions and their importance.
    Pokhrel DR; Sah MK; Gautam B; Basak HK; Bhattarai A; Chatterjee A
    RSC Adv; 2023 Jun; 13(26):17685-17704. PubMed ID: 37312992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and Molecular Dynamics Simulation Study on the Effects of the Carbon Chain Length of Gemini Surfactants on the Inhibition of the Acid-Rock Reaction Rate.
    Zhao F; Wang S; Guo J
    Langmuir; 2021 May; 37(17):5232-5241. PubMed ID: 33886313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of ionic surfactants to purified humic acid.
    Koopal LK; Goloub TP; Davis TA
    J Colloid Interface Sci; 2004 Jul; 275(2):360-7. PubMed ID: 15178260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical evaluation of models for self-assembly of short and medium chain-length surfactants in aqueous solutions.
    Rosenholm JB
    Adv Colloid Interface Sci; 2020 Feb; 276():102047. PubMed ID: 31954873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic properties of micellization of Sulfobetaine-type Zwitterionic Gemini Surfactants in aqueous solutions--a free energy perturbation study.
    Liu G; Gu D; Liu H; Ding W; Luan H; Lou Y
    J Colloid Interface Sci; 2012 Jun; 375(1):148-53. PubMed ID: 22424764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chain architecture and micellization: a mean-field coarse-grained model for poly(ethylene oxide) alkyl ether surfactants.
    García Daza FA; Colville AJ; Mackie AD
    J Chem Phys; 2015 Mar; 142(11):114902. PubMed ID: 25796261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microcalorimetric study on micellization of nonionic surfactants with a benzene ring or adamantane in their hydrophobic chains.
    Li Y; Reeve J; Wang Y; Thomas RK; Wang J; Yan H
    J Phys Chem B; 2005 Aug; 109(33):16070-4. PubMed ID: 16853041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfactants as biodegradable sustainable inhibitors for corrosion control in diverse media and conditions: A comprehensive review.
    Lavanya M; Machado AA
    Sci Total Environ; 2024 Jan; 908():168407. PubMed ID: 37939963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micelle formation of polyoxyethylene-type nonionic surfactants in bmimBF4 studied by 1H NMR and dynamic light-scattering.
    Inoue T
    J Colloid Interface Sci; 2009 Sep; 337(1):240-6. PubMed ID: 19435633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complementary use of simulations and molecular-thermodynamic theory to model micellization.
    Stephenson BC; Beers K; Blankschtein D
    Langmuir; 2006 Feb; 22(4):1500-13. PubMed ID: 16460068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.