These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36591144)

  • 1. Synthesis of Rhenium-Doped Molybdenum Sulfide by Atmospheric Pressure Chemical Vapor Deposition (CVD) for a High-Performance Photodetector.
    Liu X; Wang J; Lin Y; Zhou J; Liu Q; Yu W; Cai Y; Li X; Botcha VD; Rao T; Huang S
    ACS Omega; 2022 Dec; 7(51):48301-48309. PubMed ID: 36591144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable growth of wafer-scale monolayer transition metal dichalcogenides ternary alloys with tunable band gap.
    Li R; Yu J; Yao B; Huang X; Fu Z; Zhou Z; Yuan G; Xu J; Gao L
    Nanotechnology; 2022 Dec; 34(7):. PubMed ID: 36384029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid and Low-Temperature Molecular Precursor Approach toward Ternary Layered Metal Chalcogenides and Oxides: Mo
    Zeng N; Wang YC; Neilson J; Fairclough SM; Zou Y; Thomas AG; Cernik RJ; Haigh SJ; Lewis DJ
    Chem Mater; 2020 Sep; 32(18):7895-7907. PubMed ID: 32982044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer.
    Song JG; Ryu GH; Lee SJ; Sim S; Lee CW; Choi T; Jung H; Kim Y; Lee Z; Myoung JM; Dussarrat C; Lansalot-Matras C; Park J; Choi H; Kim H
    Nat Commun; 2015 Jul; 6():7817. PubMed ID: 26204328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical vapor deposition growth of ReS
    An Q; Liu Y; Jiang R; Meng X
    Nanoscale; 2018 Aug; 10(31):14976-14983. PubMed ID: 30051113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical Vapor Deposition of Monolayer Mo(1-x)W(x)S2 Crystals with Tunable Band Gaps.
    Wang Z; Liu P; Ito Y; Ning S; Tan Y; Fujita T; Hirata A; Chen M
    Sci Rep; 2016 Feb; 6():21536. PubMed ID: 26899364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-Dependent Two-Dimensional Transition Metal Dichalcogenide Heterostructures: Controlled Synthesis and Their Properties.
    Chen F; Wang L; Ji X; Zhang Q
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30821-30831. PubMed ID: 28814077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CVD synthesis of Mo((1-x))W(x)S2 and MoS(2(1-x))Se(2x) alloy monolayers aimed at tuning the bandgap of molybdenum disulfide.
    Zhang W; Li X; Jiang T; Song J; Lin Y; Zhu L; Xu X
    Nanoscale; 2015 Aug; 7(32):13554-60. PubMed ID: 26204564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-Dimensional Alloying Molybdenum Tin Disulfide Monolayers with Fast Photoresponse.
    Mo H; Zhang X; Liu Y; Kang P; Nan H; Gu X; Ostrikov KK; Xiao S
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):39077-39087. PubMed ID: 31573789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composition-Tunable Synthesis of Large-Scale Mo
    Park J; Kim MS; Park B; Oh SH; Roy S; Kim J; Choi W
    ACS Nano; 2018 Jun; 12(6):6301-6309. PubMed ID: 29799725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced optical, magnetic and hydrogen evolution reaction properties of Mo
    Chacko L; Rastogi PK; Narayanan TN; Jayaraj MK; Aneesh PM
    RSC Adv; 2019 Apr; 9(24):13465-13475. PubMed ID: 35519593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-dependent photoluminescence emission and Raman scattering from Mo1-x W x S2 monolayers.
    Chen Y; Wen W; Zhu Y; Mao N; Feng Q; Zhang M; Hsu HP; Zhang J; Huang YS; Xie L
    Nanotechnology; 2016 Nov; 27(44):445705. PubMed ID: 27670929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controllable Synthesis of 2H-1T' Mo
    Sun X; Liu Y; Shi J; Si C; Du J; Liu X; Jiang C; Yang S
    Adv Mater; 2023 Sep; 35(38):e2304171. PubMed ID: 37278555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2.
    Kim IS; Sangwan VK; Jariwala D; Wood JD; Park S; Chen KS; Shi F; Ruiz-Zepeda F; Ponce A; Jose-Yacaman M; Dravid VP; Marks TJ; Hersam MC; Lauhon LJ
    ACS Nano; 2014 Oct; 8(10):10551-8. PubMed ID: 25223821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene Schottky junction.
    Vabbina P; Choudhary N; Chowdhury AA; Sinha R; Karabiyik M; Das S; Choi W; Pala N
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15206-13. PubMed ID: 26148017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Uniaxial and Biaxial Strain on Few-Layered Terrace Structures of MoSâ‚‚ Grown by Vapor Transport.
    McCreary A; Ghosh R; Amani M; Wang J; Duerloo KA; Sharma A; Jarvis K; Reed EJ; Dongare AM; Banerjee SK; Terrones M; Namburu RR; Dubey M
    ACS Nano; 2016 Mar; 10(3):3186-97. PubMed ID: 26881920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct and indirect light emissions from layered ReS
    Ho CH; Liu ZZ; Lin MH
    Nanotechnology; 2017 Jun; 28(23):235203. PubMed ID: 28516896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seamlessly Splicing Metallic Sn
    Shao G; Lu Y; Hong J; Xue XX; Huang J; Xu Z; Lu X; Jin Y; Liu X; Li H; Hu S; Suenaga K; Han Z; Jiang Y; Li S; Feng Y; Pan A; Lin YC; Cao Y; Liu S
    Adv Sci (Weinh); 2020 Dec; 7(24):2002172. PubMed ID: 33344127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible direct-indirect band transition in alloying TMDs heterostructures via band engineering.
    Zi Y; Li C; Niu C; Wang F; Cho JH; Jia Y
    J Phys Condens Matter; 2019 Oct; 31(43):435503. PubMed ID: 31315096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Layer-Controlled Chemical Vapor Deposition Growth of MoS2 Vertical Heterostructures via van der Waals Epitaxy.
    Samad L; Bladow SM; Ding Q; Zhuo J; Jacobberger RM; Arnold MS; Jin S
    ACS Nano; 2016 Jul; 10(7):7039-46. PubMed ID: 27373305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.