These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 36591192)

  • 1. Technoeconomic Feasibility of Hydrogen Production from Waste Tires with the Control of CO
    Al-Qadri AA; Ahmed U; Abdul Jameel AG; Zahid U; Ahmad N; Shahbaz M; Nemitallah MA
    ACS Omega; 2022 Dec; 7(51):48075-48086. PubMed ID: 36591192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation and Modelling of Hydrogen Production from Waste Plastics: Technoeconomic Analysis.
    Al-Qadri AA; Ahmed U; Abdul Jameel AG; Zahid U; Usman M; Ahmad N
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of gypsum waste inclusion on syngas production during CO
    Mavukwana AE; Burra KG; Sempuga C; Castaldi M; Gupta AK
    Waste Manag; 2023 Sep; 171():375-381. PubMed ID: 37769596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of hydrogen production from municipal solid wastes as competitive route to produce low-carbon H
    Borgogna A; Centi G; Iaquaniello G; Perathoner S; Papanikolaou G; Salladini A
    Sci Total Environ; 2022 Jun; 827():154393. PubMed ID: 35271922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and economic analysis of waste tire gasification in fluidized and fixed bed gasifiers.
    Zang G; Jia J; Shi Y; Sharma T; Ratner A
    Waste Manag; 2019 Apr; 89():201-211. PubMed ID: 31079732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dry reforming of methane to syngas: a potential alternative process for value added chemicals-a techno-economic perspective.
    Mondal K; Sasmal S; Badgandi S; Chowdhury DR; Nair V
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22267-22273. PubMed ID: 26939689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents.
    Agon N; Hrabovský M; Chumak O; Hlína M; Kopecký V; Masláni A; Bosmans A; Helsen L; Skoblja S; Van Oost G; Vierendeels J
    Waste Manag; 2016 Jan; 47(Pt B):246-55. PubMed ID: 26210232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of waste-to-hydrogen conversion technologies for solid oxide fuel cell (SOFC) applications: Aspect of gasification process and catalyst development.
    Alaedini AH; Tourani HK; Saidi M
    J Environ Manage; 2023 Mar; 329():117077. PubMed ID: 36565498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of BioSNG from waste derived syngas: Pilot plant operation and preliminary assessment.
    Materazzi M; Taylor R; Cozens P; Manson-Whitton C
    Waste Manag; 2018 Sep; 79():752-762. PubMed ID: 30343808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Syngas production from fast pyrolysis and steam gasification of mixed food waste.
    Singh D; Raizada A; Yadav S
    Waste Manag Res; 2022 Nov; 40(11):1669-1675. PubMed ID: 35475387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyurethane Foam Waste Upcycling into an Efficient and Low Pollutant Gasification Syngas.
    Hasanzadeh R; Mojaver P; Khalilarya S; Azdast T; Chitsaz A; Mojaver M
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Torrefaction/carbonization-enhanced gasification-steam reforming of biomass for promoting hydrogen-enriched syngas production and tar elimination over gasification biochars.
    Kong G; Wang K; Zhang X; Li J; Han L; Zhang X
    Bioresour Technol; 2022 Nov; 363():127960. PubMed ID: 36113820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of the characteristics of carbonaceous material obtained via single-staged steam pyrolysis of waste tires.
    Larionov KB; Slyusarskiy KV; Ivanov AA; Mishakov IV; Pak AY; Jankovsky SA; Stoyanovskii VO; Vedyagin AA; Gubin VE
    J Air Waste Manag Assoc; 2022 Feb; 72(2):161-175. PubMed ID: 34846272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photobiohydrogen Production and Strategies for H
    Khetkorn W; Raksajit W; Maneeruttanarungroj C; Lindblad P
    Adv Biochem Eng Biotechnol; 2023; 183():253-279. PubMed ID: 37009974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of biomass and waste gasification lean syngases combustion for power generation using spark ignition engines.
    Marculescu C; Cenuşă V; Alexe F
    Waste Manag; 2016 Jan; 47(Pt A):133-40. PubMed ID: 26164851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Waste tire pyrolysis and desulfurization of tire pyrolytic oil (TPO) - A review.
    Mello M; Rutto H; Seodigeng T
    J Air Waste Manag Assoc; 2023 Mar; 73(3):159-177. PubMed ID: 36269581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life cycle assessment of waste-to-hydrogen systems for fuel cell electric buses in Glasgow, Scotland.
    Lui J; Sloan W; Paul MC; Flynn D; You S
    Bioresour Technol; 2022 Sep; 359():127464. PubMed ID: 35700893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of Clean Hydrogen Gas from Waste Plastic at Zero Net Cost.
    Wyss KM; Silva KJ; Bets KV; Algozeeb WA; Kittrell C; Teng CH; Choi CH; Chen W; Beckham JL; Yakobson BI; Tour JM
    Adv Mater; 2023 Nov; 35(48):e2306763. PubMed ID: 37694496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and modeling study of medical waste based on plasma gasification.
    Amirahmadi H; FarshiFasih H; Saviz S; Nobakhti MH
    Waste Manag; 2024 Sep; 186():198-204. PubMed ID: 38909443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of throat sizing and gasification agents in a biomass downdraft gasifier: towards CO
    Salem AM; Paul MC
    RSC Adv; 2023 Mar; 13(15):10221-10238. PubMed ID: 37026090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.