Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36591694)

  • 1. A predictive model for early therapeutic efficacy of colorectal liver metastases using multimodal MRI data.
    Su X; Zhang H; Wang Y
    J Xray Sci Technol; 2023; 31(2):357-372. PubMed ID: 36591694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning-based radiomics predicts response to chemotherapy in colorectal liver metastases.
    Wei J; Cheng J; Gu D; Chai F; Hong N; Wang Y; Tian J
    Med Phys; 2021 Jan; 48(1):513-522. PubMed ID: 33119899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Application of MRI-based Radiomics Models in the Assessment of Hepatic Metastasis of Rectal Cancer].
    Hu SX; Yang K; Wang XR; Wen DG; Xia CC; Li X; Li ZL
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 Mar; 52(2):311-318. PubMed ID: 33829708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment response prediction using MRI-based pre-, post-, and delta-radiomic features and machine learning algorithms in colorectal cancer.
    Shayesteh S; Nazari M; Salahshour A; Sandoughdaran S; Hajianfar G; Khateri M; Yaghobi Joybari A; Jozian F; Fatehi Feyzabad SH; Arabi H; Shiri I; Zaidi H
    Med Phys; 2021 Jul; 48(7):3691-3701. PubMed ID: 33894058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. T2-weighted imaging-based radiomic-clinical machine learning model for predicting the differentiation of colorectal adenocarcinoma.
    Zheng HD; Huang QY; Huang QM; Ke XT; Ye K; Lin S; Xu JH
    World J Gastrointest Oncol; 2024 Mar; 16(3):819-832. PubMed ID: 38577440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CT-based radiomics for the identification of colorectal cancer liver metastases sensitive to first-line irinotecan-based chemotherapy.
    Qi W; Yang J; Zheng L; Lu Y; Liu R; Ju Y; Niu T; Wang D
    Med Phys; 2023 May; 50(5):2705-2714. PubMed ID: 36841949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole tumor based texture analysis of magnetic resonance diffusion imaging for colorectal liver metastases: A prospective study for diffusion model comparison and early response biomarker.
    Li Y; Zhang H; Yue L; Fu C; Grimm R; Li W; Guo W; Tong T
    Eur J Radiol; 2024 Jan; 170():111203. PubMed ID: 38007855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying response in colorectal liver metastases treated with bevacizumab: development of RECIST by combining contrast-enhanced and diffusion-weighted MRI.
    Liu LH; Zhou GF; Lv H; Wang ZC; Rao SX; Zeng MS
    Eur Radiol; 2021 Aug; 31(8):5640-5649. PubMed ID: 33449175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relevance of apparent diffusion coefficient features for a radiomics-based prediction of response to induction chemotherapy in sinonasal cancer.
    Bologna M; Calareso G; Resteghini C; Sdao S; Montin E; Corino V; Mainardi L; Licitra L; Bossi P
    NMR Biomed; 2022 Apr; 35(4):e4265. PubMed ID: 32009265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A clinical-radiomics model incorporating T2-weighted and diffusion-weighted magnetic resonance images predicts the existence of lymphovascular invasion / perineural invasion in patients with colorectal cancer.
    Zhang K; Ren Y; Xu S; Lu W; Xie S; Qu J; Wang X; Shen B; Pang P; Cai X; Sun J
    Med Phys; 2021 Sep; 48(9):4872-4882. PubMed ID: 34042185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting Treatment Response of Colorectal Cancer Liver Metastases to Conventional Lipiodol-Based Transarterial Chemoembolization Using Diffusion-Weighted MR Imaging: Value of Pretreatment Apparent Diffusion Coefficients (ADC) and ADC Changes Under Therapy.
    Lahrsow M; Albrecht MH; Bickford MW; Vogl TJ
    Cardiovasc Intervent Radiol; 2017 Jun; 40(6):852-859. PubMed ID: 28357571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classifying early stages of cervical cancer with MRI-based radiomics.
    Zhao X; Wang X; Zhang B; Liu X; Xuan D; Xia Y; Zhang X
    Magn Reson Imaging; 2022 Jun; 89():70-76. PubMed ID: 35337907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer.
    Abdollahi H; Mofid B; Shiri I; Razzaghdoust A; Saadipoor A; Mahdavi A; Galandooz HM; Mahdavi SR
    Radiol Med; 2019 Jun; 124(6):555-567. PubMed ID: 30607868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epithelial salivary gland tumors: Utility of radiomics analysis based on diffusion-weighted imaging for differentiation of benign from malignant tumors.
    Shao S; Mao N; Liu W; Cui J; Xue X; Cheng J; Zheng N; Wang B
    J Xray Sci Technol; 2020; 28(4):799-808. PubMed ID: 32538891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of MR histogram analyses for prediction of response to chemotherapy in patients with colorectal hepatic metastases.
    Liang HY; Huang YQ; Yang ZX; Ying-Ding ; Zeng MS; Rao SX
    Eur Radiol; 2016 Jul; 26(7):2009-18. PubMed ID: 26494642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Therapeutic Effect to Treatment in Patients with Colorectal Liver Metastases Using Functional Magnetic Resonance Imaging and RECIST Criteria: A Pilot Study in Comparison between Bevacizumab-Containing Chemotherapy and Standard Chemotherapy.
    Zhu HB; Xu D; Zhang XY; Li XT; Xing BC; Sun YS
    Ann Surg Oncol; 2022 Jun; 29(6):3938-3949. PubMed ID: 35013857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A radiomics method based on MR FS-T2WI sequence for diagnosing of autosomal dominant polycystic kidney disease progression.
    Cong L; Hua QQ; Huang ZQ; Ma QL; Wang XM; Huang CC; Xu JX; Ma T
    Eur Rev Med Pharmacol Sci; 2021 Sep; 25(18):5769-5780. PubMed ID: 34604968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bi-parametric magnetic resonance imaging based radiomics for the identification of benign and malignant prostate lesions: cross-vendor validation.
    Ji X; Zhang J; Shi W; He D; Bao J; Wei X; Huang Y; Liu Y; Chen JC; Gao X; Tang Y; Xia W
    Phys Eng Sci Med; 2021 Sep; 44(3):745-754. PubMed ID: 34075559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic resonance imaging-radiomics evaluation of response to chemotherapy for synchronous liver metastasis of colorectal cancer.
    Ma YQ; Wen Y; Liang H; Zhong JG; Pang PP
    World J Gastroenterol; 2021 Oct; 27(38):6465-6475. PubMed ID: 34720535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning-Based Radiomics Nomogram With Dynamic Contrast-Enhanced MRI of the Osteosarcoma for Evaluation of Efficacy of Neoadjuvant Chemotherapy.
    Zhang L; Ge Y; Gao Q; Zhao F; Cheng T; Li H; Xia Y
    Front Oncol; 2021; 11():758921. PubMed ID: 34868973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.