These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 36592058)
1. scGMAAE: Gaussian mixture adversarial autoencoders for diversification analysis of scRNA-seq data. Wang HY; Zhao JP; Zheng CH; Su YS Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36592058 [TBL] [Abstract][Full Text] [Related]
2. Dimensionality reduction and visualization of single-cell RNA-seq data with an improved deep variational autoencoder. Jiang J; Xu J; Liu Y; Song B; Guo X; Zeng X; Zou Q Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37088976 [TBL] [Abstract][Full Text] [Related]
3. scSemiAAE: a semi-supervised clustering model for single-cell RNA-seq data. Wang Z; Wang H; Zhao J; Zheng C BMC Bioinformatics; 2023 May; 24(1):217. PubMed ID: 37237310 [TBL] [Abstract][Full Text] [Related]
4. scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data. Wang H; Zhao J; Zheng C; Su Y PLoS Comput Biol; 2022 Dec; 18(12):e1010772. PubMed ID: 36534702 [TBL] [Abstract][Full Text] [Related]
5. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data. Gan Y; Chen Y; Xu G; Guo W; Zou G Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714 [TBL] [Abstract][Full Text] [Related]
6. Combining Global-Constrained Concept Factorization and a Regularized Gaussian Graphical Model for Clustering Single-Cell RNA-seq Data. Xu Y; Zhang W; Zheng X; Cai X Interdiscip Sci; 2024 Mar; 16(1):1-15. PubMed ID: 37815679 [TBL] [Abstract][Full Text] [Related]
7. Transfer learning for clustering single-cell RNA-seq data crossing-species and batch, case on uterine fibroids. Wang YM; Sun Y; Wang B; Wu Z; He XY; Zhao Y Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 37991248 [TBL] [Abstract][Full Text] [Related]
8. Integrating Multiple Single-Cell RNA Sequencing Datasets Using Adversarial Autoencoders. Wang X; Zhang C; Wang L; Zheng P Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982574 [TBL] [Abstract][Full Text] [Related]
9. scGGAN: single-cell RNA-seq imputation by graph-based generative adversarial network. Huang Z; Wang J; Lu X; Mohd Zain A; Yu G Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36733262 [TBL] [Abstract][Full Text] [Related]
10. scCDG: A Method Based on DAE and GCN for scRNA-Seq Data Analysis. Wang HY; Zhao JP; Su YS; Zheng CH IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3685-3694. PubMed ID: 34752401 [TBL] [Abstract][Full Text] [Related]
11. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data. Wang H; Ma X Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164 [TBL] [Abstract][Full Text] [Related]
12. Parameter tuning is a key part of dimensionality reduction via deep variational autoencoders for single cell RNA transcriptomics. Hu Q; Greene CS Pac Symp Biocomput; 2019; 24():362-373. PubMed ID: 30963075 [TBL] [Abstract][Full Text] [Related]
13. Self-supervised deep clustering of single-cell RNA-seq data to hierarchically detect rare cell populations. Lei T; Chen R; Zhang S; Chen Y Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37769630 [TBL] [Abstract][Full Text] [Related]
14. scZAG: Integrating ZINB-Based Autoencoder with Adaptive Data Augmentation Graph Contrastive Learning for scRNA-seq Clustering. Zhang T; Ren J; Li L; Wu Z; Zhang Z; Dong G; Wang G Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892162 [TBL] [Abstract][Full Text] [Related]
15. scInterpreter: a knowledge-regularized generative model for interpretably integrating scRNA-seq data. Guo ZH; Wu Y; Wang S; Zhang Q; Shi JM; Wang YB; Chen ZH BMC Bioinformatics; 2023 Dec; 24(1):481. PubMed ID: 38104057 [TBL] [Abstract][Full Text] [Related]
16. A deep adversarial variational autoencoder model for dimensionality reduction in single-cell RNA sequencing analysis. Lin E; Mukherjee S; Kannan S BMC Bioinformatics; 2020 Feb; 21(1):64. PubMed ID: 32085701 [TBL] [Abstract][Full Text] [Related]
17. scGCL: an imputation method for scRNA-seq data based on graph contrastive learning. Xiong Z; Luo J; Shi W; Liu Y; Xu Z; Wang B Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36825817 [TBL] [Abstract][Full Text] [Related]
18. ResPAN: a powerful batch correction model for scRNA-seq data through residual adversarial networks. Wang Y; Liu T; Zhao H Bioinformatics; 2022 Aug; 38(16):3942-3949. PubMed ID: 35771600 [TBL] [Abstract][Full Text] [Related]
19. Attention-based deep clustering method for scRNA-seq cell type identification. Li S; Guo H; Zhang S; Li Y; Li M PLoS Comput Biol; 2023 Nov; 19(11):e1011641. PubMed ID: 37948464 [TBL] [Abstract][Full Text] [Related]
20. scDCCA: deep contrastive clustering for single-cell RNA-seq data based on auto-encoder network. Wang J; Xia J; Wang H; Su Y; Zheng CH Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36631401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]