These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
417 related articles for article (PubMed ID: 36592060)
21. IMCHGAN: Inductive Matrix Completion With Heterogeneous Graph Attention Networks for Drug-Target Interactions Prediction. Li J; Wang J; Lv H; Zhang Z; Wang Z IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):655-665. PubMed ID: 34115592 [TBL] [Abstract][Full Text] [Related]
22. Multi-scale topology and position feature learning and relationship-aware graph reasoning for prediction of drug-related microbes. Xuan P; Gu J; Cui H; Wang S; Toshiya N; Liu C; Zhang T Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38269610 [TBL] [Abstract][Full Text] [Related]
23. DeepMGT-DTI: Transformer network incorporating multilayer graph information for Drug-Target interaction prediction. Zhang P; Wei Z; Che C; Jin B Comput Biol Med; 2022 Mar; 142():105214. PubMed ID: 35030496 [TBL] [Abstract][Full Text] [Related]
24. HMCDA: a novel method based on the heterogeneous graph neural network and metapath for circRNA-disease associations prediction. Liang S; Liu S; Song J; Lin Q; Zhao S; Li S; Li J; Liang S; Wang J BMC Bioinformatics; 2023 Sep; 24(1):335. PubMed ID: 37697297 [TBL] [Abstract][Full Text] [Related]
25. Drug-target interaction predication via multi-channel graph neural networks. Li Y; Qiao G; Wang K; Wang G Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34661237 [TBL] [Abstract][Full Text] [Related]
26. An end-to-end heterogeneous graph representation learning-based framework for drug-target interaction prediction. Peng J; Wang Y; Guan J; Li J; Han R; Hao J; Wei Z; Shang X Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33517357 [TBL] [Abstract][Full Text] [Related]
28. Meta-HGT: Metapath-aware HyperGraph Transformer for heterogeneous information network embedding. Liu J; Song L; Wang G; Shang X Neural Netw; 2023 Jan; 157():65-76. PubMed ID: 36334540 [TBL] [Abstract][Full Text] [Related]
29. MHADTI: predicting drug-target interactions via multiview heterogeneous information network embedding with hierarchical attention mechanisms. Tian Z; Peng X; Fang H; Zhang W; Dai Q; Ye Y Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36242566 [TBL] [Abstract][Full Text] [Related]
30. A deep learning method for drug-target affinity prediction based on sequence interaction information mining. Jiang M; Shao Y; Zhang Y; Zhou W; Pang S PeerJ; 2023; 11():e16625. PubMed ID: 38099302 [TBL] [Abstract][Full Text] [Related]
31. Hierarchical graph transformer with contrastive learning for protein function prediction. Gu Z; Luo X; Chen J; Deng M; Lai L Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37369035 [TBL] [Abstract][Full Text] [Related]
32. MultiDTI: drug-target interaction prediction based on multi-modal representation learning to bridge the gap between new chemical entities and known heterogeneous network. Zhou D; Xu Z; Li W; Xie X; Peng S Bioinformatics; 2021 Dec; 37(23):4485-4492. PubMed ID: 34180970 [TBL] [Abstract][Full Text] [Related]
33. GTC: GNN-Transformer co-contrastive learning for self-supervised heterogeneous graph representation. Sun Y; Zhu D; Wang Y; Fu Y; Tian Z Neural Netw; 2025 Jan; 181():106645. PubMed ID: 39395234 [TBL] [Abstract][Full Text] [Related]
34. DeepNC: a framework for drug-target interaction prediction with graph neural networks. Tran HNT; Thomas JJ; Ahamed Hassain Malim NH PeerJ; 2022; 10():e13163. PubMed ID: 35578674 [TBL] [Abstract][Full Text] [Related]
35. Causal enhanced drug-target interaction prediction based on graph generation and multi-source information fusion. Qiao G; Wang G; Li Y Bioinformatics; 2024 Oct; 40(10):. PubMed ID: 39312682 [TBL] [Abstract][Full Text] [Related]
36. Heterogeneous graph attention network based on meta-paths for lncRNA-disease association prediction. Zhao X; Zhao X; Yin M Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34585231 [TBL] [Abstract][Full Text] [Related]
37. NGCN: Drug-target interaction prediction by integrating information and feature learning from heterogeneous network. Cao J; Chen Q; Qiu J; Wang Y; Lan W; Du X; Tan K J Cell Mol Med; 2024 Apr; 28(7):e18224. PubMed ID: 38509739 [TBL] [Abstract][Full Text] [Related]
38. GCHN-DTI: Predicting drug-target interactions by graph convolution on heterogeneous networks. Wang W; Liang S; Yu M; Liu D; Zhang H; Wang X; Zhou Y Methods; 2022 Oct; 206():101-107. PubMed ID: 36058415 [TBL] [Abstract][Full Text] [Related]
39. A heterogeneous network-based method with attentive meta-path extraction for predicting drug-target interactions. Wang H; Huang F; Xiong Z; Zhang W Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35641162 [TBL] [Abstract][Full Text] [Related]
40. Status-Aware Signed Heterogeneous Network Embedding With Graph Neural Networks. Lin W; Li B IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):4580-4592. PubMed ID: 35226606 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]