These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36592132)

  • 21. Mechanism-Based Design of a High-Potential Catholyte Enables a 3.2 V All-Organic Nonaqueous Redox Flow Battery.
    Yan Y; Robinson SG; Sigman MS; Sanford MS
    J Am Chem Soc; 2019 Sep; 141(38):15301-15306. PubMed ID: 31503480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Critical Roles of pH and Activated Carbon on the Speciation and Performance of an Archetypal Organometallic Complex for Aqueous Redox Flow Batteries.
    Burghoff A; Holubowitch NE
    J Am Chem Soc; 2024 Apr; 146(14):9728-9740. PubMed ID: 38535624
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage.
    Zhang C; Zhang L; Yu G
    Acc Chem Res; 2020 Aug; 53(8):1648-1659. PubMed ID: 32672933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New phenazine based anolyte material for high voltage organic redox flow batteries.
    Romadina EI; Komarov DS; Stevenson KJ; Troshin PA
    Chem Commun (Camb); 2021 Mar; 57(24):2986-2989. PubMed ID: 33634297
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A higher voltage Fe(ii) bipyridine complex for non-aqueous redox flow batteries.
    Cammack CX; Pratt HD; Small LJ; Anderson TM
    Dalton Trans; 2021 Jan; 50(3):858-868. PubMed ID: 33346757
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Nitrogen Battery Electrode involving Eight-Electron Transfer per Nitrogen for Energy Storage.
    Jiang H; Chen GF; Hai G; Wang W; Liang Z; Ding LX; Yuan Y; Lu J; Antonietti M; Wang H
    Angew Chem Int Ed Engl; 2023 Jul; 62(30):e202305695. PubMed ID: 37235524
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redox-Active Eutectic Electrolyte with Viologen and Ferrocene Derivatives for Flow Batteries.
    Ghahremani R; Dean W; Sinclair N; Shen X; Starvaggi N; Alfurayj I; Burda C; Pentzer E; Wainright J; Savinell R; Gurkan B
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1148-1156. PubMed ID: 36563037
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Energy-Dense, Powerful, Robust Bipolar Zinc-Ferrocene Redox-Flow Battery.
    Luo J; Hu B; Hu M; Wu W; Liu TL
    Angew Chem Int Ed Engl; 2022 Jul; 61(30):e202204030. PubMed ID: 35523722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rechargeable Zinc-Aqueous Polysulfide Battery with a Mediator-Ion Solid Electrolyte.
    Gross MM; Manthiram A
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10612-10617. PubMed ID: 29561586
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New Mechanism for the Reduction of Vanadyl Acetylacetonate to Vanadium Acetylacetonate for Room Temperature Flow Batteries.
    Shamie JS; Liu C; Shaw LL; Sprenkle VL
    ChemSusChem; 2017 Feb; 10(3):533-540. PubMed ID: 27863095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Organic Electroactive Molecule-Based Electrolytes for Redox Flow Batteries: Status and Challenges of Molecular Design.
    Zhong F; Yang M; Ding M; Jia C
    Front Chem; 2020; 8():451. PubMed ID: 32637392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy storage inspired by nature - ionic liquid iron-sulfur clusters as electrolytes for redox flow batteries.
    Modrzynski C; Burger P
    Dalton Trans; 2019 Feb; 48(6):1941-1946. PubMed ID: 30633269
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An All-Soluble Fe/Mn-Based Alkaline Redox Flow Battery System.
    Shen X; Kellamis C; Tam V; Sinclair N; Wainright J; Savinell R
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):18686-18692. PubMed ID: 38573309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Stable Organo-Aluminum Analyte Enables Multielectron Storage for a Nonaqueous Redox Flow Battery.
    Arnold A; Dougherty RJ; Carr CR; Reynolds LC; Fettinger JC; Augustin A; Berben LA
    J Phys Chem Lett; 2020 Oct; 11(19):8202-8207. PubMed ID: 32897076
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fundamental properties of TEMPO-based catholytes for aqueous redox flow batteries: effects of substituent groups and electrolytes on electrochemical properties, solubilities and battery performance.
    Zhou W; Liu W; Qin M; Chen Z; Xu J; Cao J; Li J
    RSC Adv; 2020 Jun; 10(37):21839-21844. PubMed ID: 35516610
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel, Stable Catholyte for Aqueous Organic Redox Flow Batteries: Symmetric Cell Study of Hydroquinones with High Accessible Capacity.
    Yang X; Garcia SN; Janoschka T; Kónya D; Hager MD; Schubert US
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34201612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane.
    Jia C; Pan F; Zhu YG; Huang Q; Lu L; Wang Q
    Sci Adv; 2015 Nov; 1(10):e1500886. PubMed ID: 26702440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries.
    Hendriks KH; Robinson SG; Braten MN; Sevov CS; Helms BA; Sigman MS; Minteer SD; Sanford MS
    ACS Cent Sci; 2018 Feb; 4(2):189-196. PubMed ID: 29532018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring the Versatility of Membrane-Free Battery Concept Using Different Combinations of Immiscible Redox Electrolytes.
    Navalpotro P; Sierra N; Trujillo C; Montes I; Palma J; Marcilla R
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41246-41256. PubMed ID: 30398052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.