BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36592805)

  • 1. Hydrophobization of aerogels based on chitosan, nanocellulose and tannic acid: Improvements on the aerogel features and the adsorption of contaminants in water.
    Camparotto NG; Neves TF; Mastelaro VR; Prediger P
    Environ Res; 2023 Mar; 220():115197. PubMed ID: 36592805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced removal of bisphenol A from aqueous solution by aluminum-based MOF/sodium alginate-chitosan composite beads.
    Luo Z; Chen H; Wu S; Yang C; Cheng J
    Chemosphere; 2019 Dec; 237():124493. PubMed ID: 31398611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous metal-organic framework-acrylamide-chitosan composite aerogels: Preparation, characterization and adsorption mechanism of azo anionic dyes adsorbed from water.
    Jin Y; Li Y; Du Q; Zhao S; Jing Z; Pi X; Wang Y; Wang D
    Int J Biol Macromol; 2023 Dec; 253(Pt 5):127155. PubMed ID: 37783255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of diclofenac sodium on bilayer amino-functionalized cellulose nanocrystals/chitosan composite.
    Hu D; Huang H; Jiang R; Wang N; Xu H; Wang YG; Ouyang XK
    J Hazard Mater; 2019 May; 369():483-493. PubMed ID: 30798163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-efficient removal of anionic dye from aqueous solution using metal-organic frameworks@chitosan aerogel rich in benzene structure.
    Chen B; Zhou X; Wang X; Zhao S; Jing Z; Jin Y; Pi X; Du Q; Chen L; Li Y
    Int J Biol Macromol; 2024 Jan; 256(Pt 1):128433. PubMed ID: 38008141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Utilization of UiO-66-NH
    Chen Z; Wu Y; Tan X; Meng J; Cen J; Liu M
    Se Pu; 2022 Jun; 40(6):556-564. PubMed ID: 35616201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of polyaminated chitosan-zirconium(IV) complex bead adsorbent for highly efficient removal and recovery of phosphorus in aqueous solutions.
    Chen Z; Luo H; Rong H
    Int J Biol Macromol; 2020 Dec; 164():1183-1193. PubMed ID: 32735922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF) aerogels: Bottom-up assembly perspective for production of adsorbents.
    Abbasi Moud A
    Int J Biol Macromol; 2022 Dec; 222(Pt A):1-29. PubMed ID: 36156339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of nanocellulose aerogels and Cu-BTC/nanocellulose aerogel composites for adsorption of organic dyes and heavy metal ions.
    Shaheed N; Javanshir S; Esmkhani M; Dekamin MG; Naimi-Jamal MR
    Sci Rep; 2021 Sep; 11(1):18553. PubMed ID: 34535724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic cellulose nanofiber/chitosan aerogel with thermal management and oil absorption properties.
    Zhang M; Jiang S; Han F; Li M; Wang N; Liu L
    Carbohydr Polym; 2021 Jul; 264():118033. PubMed ID: 33910743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined use of tannic acid-type organic composite adsorbents and ozone for simultaneous removal of various kinds of radionuclides in river water.
    Tachibana Y; Kalak T; Nogami M; Tanaka M
    Water Res; 2020 Sep; 182():116032. PubMed ID: 32574820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High hydrophobic ZIF-8@cellulose nanofibers/chitosan double network aerogel for oil adsorbent and oil/water separation.
    Si R; Luo H; Zhang T; Pu J
    Int J Biol Macromol; 2023 May; 238():124008. PubMed ID: 36933590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid silica aerogel nanocomposite adsorbents designed for Cd(II) removal from aqueous solution.
    Shariatinia Z; Esmaeilzadeh A
    Water Environ Res; 2019 Dec; 91(12):1624-1637. PubMed ID: 31206828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of methylene blue dye from aqueous solution using an efficient chitosan-pectin bio-adsorbent: kinetics and isotherm studies.
    Mohrazi A; Ghasemi-Fasaei R
    Environ Monit Assess; 2023 Jan; 195(2):339. PubMed ID: 36705863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay.
    Chang MY; Juang RS
    J Colloid Interface Sci; 2004 Oct; 278(1):18-25. PubMed ID: 15313633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel cationic polymer modified magnetic chitosan beads for efficient adsorption of heavy metals and dyes over a wide pH range.
    Zhang M; Zhang Z; Peng Y; Feng L; Li X; Zhao C; Sarfaraz K
    Int J Biol Macromol; 2020 Aug; 156():289-301. PubMed ID: 32289412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polydopamine modified cerium-based MOFs/ chitosan aerogel beads for the efficient phosphate removal.
    Shen J; Gu Y; Yang Y; He J; Zhao C; Sun Y; Li J; Yang L
    Chemosphere; 2023 Dec; 345():140421. PubMed ID: 37839741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemically Cross-Linked Cellulose Nanocrystal Aerogels for Effective Removal of Cation Dye.
    Liang L; Zhang S; Goenaga GA; Meng X; Zawodzinski TA; Ragauskas AJ
    Front Chem; 2020; 8():570. PubMed ID: 32733852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II).
    Zhou Y; Fu S; Zhang L; Zhan H; Levit MV
    Carbohydr Polym; 2014 Jan; 101():75-82. PubMed ID: 24299751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The surfactant-ionic liquid bi-functionalization of chitosan beads for their adsorption performance improvement toward Tartrazine.
    Ranjbari S; Ayati A; Tanhaei B; Al-Othman A; Karimi F
    Environ Res; 2022 Mar; 204(Pt B):111961. PubMed ID: 34492277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.