BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36592910)

  • 1. A molecular level understanding of antimony immobilization mechanism on goethite by the combination of X-ray absorption spectroscopy and density functional theory calculations.
    Sun Q; Liu C; Fan T; Cheng H; Cui P; Gu X; Chen L; Ata-Ul-Karim ST; Zhou D; Wang Y
    Sci Total Environ; 2023 Mar; 865():161294. PubMed ID: 36592910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimony Isotope Fractionation during Adsorption on Iron (Oxyhydr)oxides.
    Luo J; Xie X; Shi J; Wang Y
    Environ Sci Technol; 2024 Jan; 58(1):695-703. PubMed ID: 38141021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimony(V) incorporation into synthetic ferrihydrite, goethite, and natural iron oxyhydroxides.
    Mitsunobu S; Takahashi Y; Terada Y; Sakata M
    Environ Sci Technol; 2010 May; 44(10):3712-8. PubMed ID: 20426473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption behavior and surface complexation modeling of oxygen anion Sb(V) adsorption on goethite.
    Song K; Zhang C; Shan J; Wang W; Liu H; He M
    Sci Total Environ; 2022 Aug; 833():155284. PubMed ID: 35429562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of aqueous Fe(II) on Sb(V) sorption on soil and goethite.
    Fan JX; Wang YJ; Fan TT; Dang F; Zhou DM
    Chemosphere; 2016 Mar; 147():44-51. PubMed ID: 26761596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface loading effects on orthophosphate surface complexation at the goethite/water interface as examined by extended X-ray Absorption Fine Structure (EXAFS) spectroscopy.
    Abdala DB; Northrup PA; Arai Y; Sparks DL
    J Colloid Interface Sci; 2015 Jan; 437():297-303. PubMed ID: 25441364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into Antimony Adsorption on {001} TiO
    Yan L; Song J; Chan T; Jing C
    Environ Sci Technol; 2017 Jun; 51(11):6335-6341. PubMed ID: 28513146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure.
    Guo X; Wu Z; He M; Meng X; Jin X; Qiu N; Zhang J
    J Hazard Mater; 2014 Jul; 276():339-45. PubMed ID: 24910911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption of Sb(III) and Sb(V) to goethite: influence on Sb(III) oxidation and mobilization.
    Leuz AK; Mönch H; Johnson CA
    Environ Sci Technol; 2006 Dec; 40(23):7277-82. PubMed ID: 17180978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The antimony sorption and transport mechanisms in removal experiment by Mn-coated biochar.
    Jia X; Zhou J; Liu J; Liu P; Yu L; Wen B; Feng Y
    Sci Total Environ; 2020 Jul; 724():138158. PubMed ID: 32247137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption mechanisms of diphenylarsinic acid on ferrihydrite, goethite and hematite using sequential extraction, FTIR measurement and XAFS spectroscopy.
    Zhu M; Hu X; Tu C; Zhang H; Song F; Luo Y; Christie P
    Sci Total Environ; 2019 Jun; 669():991-1000. PubMed ID: 30970466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimony Isotope Fractionation Revealed from EXAFS during Adsorption on Fe (Oxyhydr)oxides.
    Zhou W; Zhou J; Feng X; Wen B; Zhou A; Liu P; Sun G; Zhou Z; Liu X
    Environ Sci Technol; 2023 Jun; 57(25):9353-9361. PubMed ID: 37295412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite.
    Ona-Nguema G; Morin G; Juillot F; Calas G; Brown GE
    Environ Sci Technol; 2005 Dec; 39(23):9147-55. PubMed ID: 16382936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates.
    Karimian N; Burton ED; Johnston SG
    Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unveiling interfacial interaction between antimony oxyanions and boehmite nanorods: Spectroscopic evidence and density functional theory analysis.
    Lee SY; Cho E; Suh BL; Choi JW; Lee S; Kim J; Lee C; Jung KW
    J Hazard Mater; 2024 May; 469():133902. PubMed ID: 38422738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the underlying effect of Fe vacancy defects on the adsorption affinity of goethite for arsenic immobilization.
    Hou J; Tan X; Xiang Y; Zheng Q; Chen C; Sha Z; Ren L; Wang M; Tan W
    Environ Pollut; 2022 Dec; 314():120268. PubMed ID: 36167163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the goethite role on stibnite oxidative dissolution and transformation: Spectroscopic and DFT study.
    Jin Y; Qiu Y; Kumar R; Chan T; Yan L
    Sci Total Environ; 2024 Jan; 906():167823. PubMed ID: 37844637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils.
    Vithanage M; Rajapaksha AU; Dou X; Bolan NS; Yang JE; Ok YS
    J Colloid Interface Sci; 2013 Sep; 406():217-24. PubMed ID: 23791229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimony sorption at gibbsite-water interface.
    Rakshit S; Sarkar D; Punamiya P; Datta R
    Chemosphere; 2011 Jul; 84(4):480-3. PubMed ID: 21481912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of Arsenic and Antimony Co-sorption onto Jarosite: An X-ray Absorption Spectroscopic Study.
    Karimian N; Johnston SG; Tavakkoli E; Frierdich AJ; Burton ED
    Environ Sci Technol; 2023 Mar; 57(12):4813-4820. PubMed ID: 36929871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.