These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36592921)

  • 1. Prediction of lysine HMGylation sites using multiple feature extraction and fuzzy support vector machine.
    Ju Z; Wang SY
    Anal Biochem; 2023 Feb; 663():115032. PubMed ID: 36592921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC.
    Ju Z; He JJ
    J Mol Graph Model; 2017 Sep; 76():356-363. PubMed ID: 28763688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of lysine glutarylation sites by maximum relevance minimum redundancy feature selection.
    Ju Z; He JJ
    Anal Biochem; 2018 Jun; 550():1-7. PubMed ID: 29641975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou׳s general PseAAC.
    Ju Z; Cao JZ; Gu H
    J Theor Biol; 2016 May; 397():145-50. PubMed ID: 26908349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of S-sulfenylation sites using mRMR feature selection and fuzzy support vector machine algorithm.
    Ju Z; Wang SY
    J Theor Biol; 2018 Nov; 457():6-13. PubMed ID: 30125576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of lysine formylation sites using the composition of k-spaced amino acid pairs via Chou's 5-steps rule and general pseudo components.
    Ju Z; Wang SY
    Genomics; 2020 Jan; 112(1):859-866. PubMed ID: 31175975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting lysine lipoylation sites using bi-profile bayes feature extraction and fuzzy support vector machine algorithm.
    Ju Z; Wang SY
    Anal Biochem; 2018 Nov; 561-562():11-17. PubMed ID: 30218638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou's general PseAAC.
    Ju Z; He JJ
    J Mol Graph Model; 2017 Oct; 77():200-204. PubMed ID: 28886434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of protein N-formylation using the composition of k-spaced amino acid pairs.
    Ju Z; Cao JZ
    Anal Biochem; 2017 Oct; 534():40-45. PubMed ID: 28709899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iLM-2L: A two-level predictor for identifying protein lysine methylation sites and their methylation degrees by incorporating K-gap amino acid pairs into Chou׳s general PseAAC.
    Ju Z; Cao JZ; Gu H
    J Theor Biol; 2015 Nov; 385():50-7. PubMed ID: 26254214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of 2-hydroxyisobutyrylation sites by integrating multiple sequence features with ensemble support vector machine.
    Ju Z; Wang SY
    Comput Biol Chem; 2020 May; 87():107280. PubMed ID: 32505881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of pupylation sites using the composition of k-spaced amino acid pairs.
    Tung CW
    J Theor Biol; 2013 Nov; 336():11-7. PubMed ID: 23871866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PLP_FS: prediction of lysine phosphoglycerylation sites in protein using support vector machine and fusion of multiple F_Score feature selection.
    Sohrawordi M; Hossain MA; Hasan MAM
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35929355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glypre: In Silico Prediction of Protein Glycation Sites by Fusing Multiple Features and Support Vector Machine.
    Zhao X; Zhao X; Bao L; Zhang Y; Dai J; Yin M
    Molecules; 2017 Nov; 22(11):. PubMed ID: 29099805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of methylation sites using the composition of K-spaced amino acid pairs.
    Zhang W; Xu X; Yin M; Luo N; Zhang J; Wang J
    Protein Pept Lett; 2013 Aug; 20(8):911-7. PubMed ID: 23276225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting lysine glycation sites using bi-profile bayes feature extraction.
    Ju Z; Sun J; Li Y; Wang L
    Comput Biol Chem; 2017 Dec; 71():98-103. PubMed ID: 29040908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. iDPGK: characterization and identification of lysine phosphoglycerylation sites based on sequence-based features.
    Huang KY; Hung FY; Kao HJ; Lau HH; Weng SL
    BMC Bioinformatics; 2020 Dec; 21(1):568. PubMed ID: 33297954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Identification of Protein Pupylation Sites by Using Profile-Based Composition of k-Spaced Amino Acid Pairs.
    Hasan MM; Zhou Y; Lu X; Li J; Song J; Zhang Z
    PLoS One; 2015; 10(6):e0129635. PubMed ID: 26080082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mal-Prec: computational prediction of protein Malonylation sites via machine learning based feature integration : Malonylation site prediction.
    Liu X; Wang L; Li J; Hu J; Zhang X
    BMC Genomics; 2020 Nov; 21(1):812. PubMed ID: 33225896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and identification of lysine glutarylation based on intrinsic interdependence between positions in the substrate sites.
    Huang KY; Kao HJ; Hsu JB; Weng SL; Lee TY
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):384. PubMed ID: 30717647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.