These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36593238)

  • 21. A stress-responsive caleosin-like protein, AtCLO4, acts as a negative regulator of ABA responses in Arabidopsis.
    Kim YY; Jung KW; Yoo KS; Jeung JU; Shin JS
    Plant Cell Physiol; 2011 May; 52(5):874-84. PubMed ID: 21471120
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biogenesis and functions of lipid droplets in plants: Thematic Review Series: Lipid Droplet Synthesis and Metabolism: from Yeast to Man.
    Chapman KD; Dyer JM; Mullen RT
    J Lipid Res; 2012 Feb; 53(2):215-26. PubMed ID: 22045929
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lipid Droplets: Packing Hydrophobic Molecules Within the Aqueous Cytoplasm.
    Guzha A; Whitehead P; Ischebeck T; Chapman KD
    Annu Rev Plant Biol; 2023 May; 74():195-223. PubMed ID: 36413579
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of oil synthesis pathway in Cyperus esculentus tubers and identification of oleosin and caleosin genes.
    Zhu Y; Wang Y; Wei Z; Zhang X; Jiao B; Tian Y; Yan F; Li J; Liu Y; Yang X; Zhang J; Wang X; Mu Z; Wang Q
    J Plant Physiol; 2023 May; 284():153961. PubMed ID: 36933340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cloning and secondary structure analysis of caleosin, a unique calcium-binding protein in oil bodies of plant seeds.
    Chen JC; Tsai CC; Tzen JT
    Plant Cell Physiol; 1999 Oct; 40(10):1079-86. PubMed ID: 10589521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The characteristics and potential applications of structural lipid droplet proteins in plants.
    Laibach N; Post J; Twyman RM; Gronover CS; Prüfer D
    J Biotechnol; 2015 May; 201():15-27. PubMed ID: 25160916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The structural organization of seed oil bodies could explain the contrasted oil extractability observed in two rapeseed genotypes.
    Boulard C; Bardet M; Chardot T; Dubreucq B; Gromova M; Guillermo A; Miquel M; Nesi N; Yen-Nicolaÿ S; Jolivet P
    Planta; 2015 Jul; 242(1):53-68. PubMed ID: 25820267
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of an oleosin-like gene in seagrass seeds.
    Pasaribu B; Wang MMC; Jiang PL
    Biotechnol Lett; 2017 Nov; 39(11):1757-1763. PubMed ID: 28871433
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Caleosins: Ca2+-binding proteins associated with lipid bodies.
    Naested H; Frandsen GI; Jauh GY; Hernandez-Pinzon I; Nielsen HB; Murphy DJ; Rogers JC; Mundy J
    Plant Mol Biol; 2000 Nov; 44(4):463-76. PubMed ID: 11197322
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure, function and biogenesis of storage lipid bodies and oleosins in plants.
    Murphy DJ
    Prog Lipid Res; 1993; 32(3):247-80. PubMed ID: 8140114
    [No Abstract]   [Full Text] [Related]  

  • 31. Overexpression of Seipin1 Increases Oil in Hydroxy Fatty Acid-Accumulating Seeds.
    Lunn D; Wallis JG; Browse J
    Plant Cell Physiol; 2018 Jan; 59(1):205-214. PubMed ID: 29149288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of caleosin and two oleosin isoforms in oil bodies of pine megagametophytes.
    Pasaribu B; Chung TY; Chen CS; Wang SL; Jiang PL; Tzen JT
    Plant Physiol Biochem; 2014 Sep; 82():142-50. PubMed ID: 24954070
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oil Biosynthesis in Underground Oil-Rich Storage Vegetative Tissue: Comparison of Cyperus esculentus Tuber with Oil Seeds and Fruits.
    Yang Z; Ji H; Liu D
    Plant Cell Physiol; 2016 Dec; 57(12):2519-2540. PubMed ID: 27742886
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An in vitro system to examine the effective phospholipids and structural domain for protein targeting to seed oil bodies.
    Chen JC; Tzen JT
    Plant Cell Physiol; 2001 Nov; 42(11):1245-52. PubMed ID: 11726710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioinformatics Reveal Five Lineages of Oleosins and the Mechanism of Lineage Evolution Related to Structure/Function from Green Algae to Seed Plants.
    Huang MD; Huang AH
    Plant Physiol; 2015 Sep; 169(1):453-70. PubMed ID: 26232488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New Insights Into the Role of Seed Oil Body Proteins in Metabolism and Plant Development.
    Shao Q; Liu X; Su T; Ma C; Wang P
    Front Plant Sci; 2019; 10():1568. PubMed ID: 31921234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plant seed oil-bodies as carriers for foreign proteins.
    van Rooijen GJ; Moloney MM
    Biotechnology (N Y); 1995 Jan; 13(1):72-7. PubMed ID: 9634752
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oleosins and oil bodies in seeds and other organs.
    Huang AH
    Plant Physiol; 1996 Apr; 110(4):1055-61. PubMed ID: 8934621
    [No Abstract]   [Full Text] [Related]  

  • 39. A unique caleosin serving as the major integral protein in oil bodies isolated from Chlorella sp. cells cultured with limited nitrogen.
    Lin IP; Jiang PL; Chen CS; Tzen JT
    Plant Physiol Biochem; 2012 Dec; 61():80-7. PubMed ID: 23085585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Co-localization of putative calcium channels (phenylalkylamine-binding sites) on oil bodies in protoplasts from dark-grown sunflower seedling cotyledons.
    Vandana S; Bhatla SC
    Plant Signal Behav; 2009 Jul; 4(7):604-9. PubMed ID: 19820351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.