These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 36593305)

  • 1. Pressure optimization for hydraulic-electric hybrid biped robot power unit based on genetic algorithm.
    Zhao P; Xie A; Zhu S; Kong L
    Sci Rep; 2023 Jan; 13(1):60. PubMed ID: 36593305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis and control of biped robot with variable stiffness ankle joints.
    Lin Z; Zang X; Zhang X; Liu Y; Heng S
    Technol Health Care; 2020; 28(S1):453-462. PubMed ID: 32364178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A parallel heterogeneous policy deep reinforcement learning algorithm for bipedal walking motion design.
    Li C; Li M; Tao C
    Front Neurorobot; 2023; 17():1205775. PubMed ID: 37614967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic.
    Li TH; Su YT; Lai SW; Hu JJ
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):736-48. PubMed ID: 21095871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Torque Curve Optimization of Ankle Push-Off in Walking Bipedal Robots Using Genetic Algorithm.
    Ji Q; Qian Z; Ren L; Ren L
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems.
    Mikolajczyk T; Mikołajewska E; Al-Shuka HFN; Malinowski T; Kłodowski A; Pimenov DY; Paczkowski T; Hu F; Giasin K; Mikołajewski D; Macko M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy-efficient SVM learning control system for biped walking robots.
    Wang L; Liu Z; Chen CL; Zhang Y; Lee S; Chen X
    IEEE Trans Neural Netw Learn Syst; 2013 May; 24(5):831-7. PubMed ID: 24808432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle emulation with DC motor and neural networks for biped robots.
    Serhan H; Nasr CG; Henaff P
    Int J Neural Syst; 2010 Aug; 20(4):341-53. PubMed ID: 20726042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot.
    Or J
    Neural Netw; 2010 Apr; 23(3):452-60. PubMed ID: 20031370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and control of a pneumatic musculoskeletal biped robot.
    Zang X; Liu Y; Liu X; Zhao J
    Technol Health Care; 2016 Apr; 24 Suppl 2():S443-54. PubMed ID: 27163303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Momentum Compensation Control by Using Arms for Bipedal Dynamic Walking.
    Gao Z; Chen X; Yu Z; Han L; Zhang J; Huang G
    Biomimetics (Basel); 2023 Jan; 8(1):. PubMed ID: 36648817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symmetrical Efficient Gait Planning Based on Constrained Direct Collocation.
    Chen B; Zang X; Zhang Y; Gao L; Zhu Y; Zhao J
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on Walking Gait Planning and Simulation of a Novel Hybrid Biped Robot.
    Sun P; Gu Y; Mao H; Chen Z; Li Y
    Biomimetics (Basel); 2023 Jun; 8(2):. PubMed ID: 37366853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved force-based impedance control method for the HDU of legged robots.
    Ba K; Yu B; Gao Z; Zhu Q; Ma G; Kong X
    ISA Trans; 2019 Jan; 84():187-205. PubMed ID: 30309724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Hybrid Position/Force Walking Robot Control Using Extenics Theory and Neutrosophic Logic Decision.
    Gal IA; Ciocîrlan AC; Vlădăreanu L
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Spring Compensation Method for a Low-Cost Biped Robot Based on Whole Body Control.
    Wang Z; Kou L; Ke W; Chen Y; Bai Y; Li Q; Lu D
    Biomimetics (Basel); 2023 Mar; 8(1):. PubMed ID: 36975356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biped Walking Based on Stiffness Optimization and Hierarchical Quadratic Programming.
    Shi X; Gao J; Lu Y; Tian D; Liu Y
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33801179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parametric Design and Prototyping of a Low-Power Planar Biped Robot.
    Şafak KK; Baturalp TB; Bozkurt S
    Biomimetics (Basel); 2023 Aug; 8(4):. PubMed ID: 37622951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of Disturbance Recovery Based on MPC and Whole-Body Dynamics Control of Biped Walking.
    Shi X; Gao J; Lu Y; Tian D; Liu Y
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32456320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.