BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 36593394)

  • 1. Discovery of drug-omics associations in type 2 diabetes with generative deep-learning models.
    Allesøe RL; Lundgaard AT; Hernández Medina R; Aguayo-Orozco A; Johansen J; Nissen JN; Brorsson C; Mazzoni G; Niu L; Biel JH; Leal Rodríguez C; Brasas V; Webel H; Benros ME; Pedersen AG; Chmura PJ; Jacobsen UP; Mari A; Koivula R; Mahajan A; Vinuela A; Tajes JF; Sharma S; Haid M; Hong MG; Musholt PB; De Masi F; Vogt J; Pedersen HK; Gudmundsdottir V; Jones A; Kennedy G; Bell J; Thomas EL; Frost G; Thomsen H; Hansen E; Hansen TH; Vestergaard H; Muilwijk M; Blom MT; 't Hart LM; Pattou F; Raverdy V; Brage S; Kokkola T; Heggie A; McEvoy D; Mourby M; Kaye J; Hattersley A; McDonald T; Ridderstråle M; Walker M; Forgie I; Giordano GN; Pavo I; Ruetten H; Pedersen O; Hansen T; Dermitzakis E; Franks PW; Schwenk JM; Adamski J; McCarthy MI; Pearson E; Banasik K; Rasmussen S; Brunak S;
    Nat Biotechnol; 2023 Mar; 41(3):399-408. PubMed ID: 36593394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MCluster-VAEs: An end-to-end variational deep learning-based clustering method for subtype discovery using multi-omics data.
    Rong Z; Liu Z; Song J; Cao L; Yu Y; Qiu M; Hou Y
    Comput Biol Med; 2022 Nov; 150():106085. PubMed ID: 36162197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-omics integration method based on attention deep learning network for biomedical data classification.
    Gong P; Cheng L; Zhang Z; Meng A; Li E; Chen J; Zhang L
    Comput Methods Programs Biomed; 2023 Apr; 231():107377. PubMed ID: 36739624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multimodal deep learning approaches for single-cell multi-omics data integration.
    Athaya T; Ripan RC; Li X; Hu H
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37651607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data.
    Lemsara A; Ouadfel S; Fröhlich H
    BMC Bioinformatics; 2020 Apr; 21(1):146. PubMed ID: 32299344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis.
    Tong L; Mitchel J; Chatlin K; Wang MD
    BMC Med Inform Decis Mak; 2020 Sep; 20(1):225. PubMed ID: 32933515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated multi-omics analysis of ovarian cancer using variational autoencoders.
    Hira MT; Razzaque MA; Angione C; Scrivens J; Sawan S; Sarker M
    Sci Rep; 2021 Mar; 11(1):6265. PubMed ID: 33737557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A benchmark study of deep learning-based multi-omics data fusion methods for cancer.
    Leng D; Zheng L; Wen Y; Zhang Y; Wu L; Wang J; Wang M; Zhang Z; He S; Bo X
    Genome Biol; 2022 Aug; 23(1):171. PubMed ID: 35945544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring generative deep learning for omics data using log-linear models.
    Hess M; Hackenberg M; Binder H
    Bioinformatics; 2020 Dec; 36(20):5045-5053. PubMed ID: 32647888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE).
    Ma T; Zhang A
    BMC Genomics; 2019 Dec; 20(Suppl 11):944. PubMed ID: 31856727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fair experimental comparison of neural network architectures for latent representations of multi-omics for drug response prediction.
    Hauptmann T; Kramer S
    BMC Bioinformatics; 2023 Feb; 24(1):45. PubMed ID: 36788531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multi-modal data harmonisation approach for discovery of COVID-19 drug targets.
    Chen T; Philip M; Lê Cao KA; Tyagi S
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34036326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene-centric multi-omics integration with convolutional encoders for cancer drug response prediction.
    Lee M; Kim PJ; Joe H; Kim HG
    Comput Biol Med; 2022 Dec; 151(Pt A):106192. PubMed ID: 36327883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep generative models in single-cell omics.
    Rivero-Garcia I; Torres M; Sánchez-Cabo F
    Comput Biol Med; 2024 Jun; 176():108561. PubMed ID: 38749321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration.
    Wang Y; Yang Y; Chen S; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer.
    Malik V; Kalakoti Y; Sundar D
    BMC Genomics; 2021 Mar; 22(1):214. PubMed ID: 33761889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsupervised classification of multi-omics data during cardiac remodeling using deep learning.
    Chung NC; Mirza B; Choi H; Wang J; Wang D; Ping P; Wang W
    Methods; 2019 Aug; 166():66-73. PubMed ID: 30853547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating multi-omics data through deep learning for accurate cancer prognosis prediction.
    Chai H; Zhou X; Zhang Z; Rao J; Zhao H; Yang Y
    Comput Biol Med; 2021 Jul; 134():104481. PubMed ID: 33989895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating gene expression from DNA methylation and copy number variation: A deep learning regression model for multi-omics integration.
    Seal DB; Das V; Goswami S; De RK
    Genomics; 2020 Jul; 112(4):2833-2841. PubMed ID: 32234433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated Multi-Omics Analyses in Oncology: A Review of Machine Learning Methods and Tools.
    Nicora G; Vitali F; Dagliati A; Geifman N; Bellazzi R
    Front Oncol; 2020; 10():1030. PubMed ID: 32695678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.